CUSTERING CLUSTERING

About Data

Source: https://www.kaggle.com/datasets/smaryamazimiasmaroud/credit-cardholders

Objective:

- Cluster customers for further marketing campaigns appropriately tailored (initially primary purpose of the dataset),
- Predit high-risk customers' based on behaviors in spending, expenditure, paying back,... (deeper implement analysis)

Supported by:

- Perplexity for inititative suggestion
- Gemini and Copilot (inside Visual Code Studio) for code modify and recommendation.

Data	columns (total 18 columns):			
#	Column		Null Count	Dtype
0	CUST_ID	8950	non-null	object
1	BALANCE	8950	non-null	float64
2	BALANCE_FREQUENCY	8950	non-null	float64
3	PURCHASES	8950	non-null	float64
4	ONEOFF_PURCHASES	8950	non-null	float64
5	INSTALLMENTS_PURCHASES	8950	non-null	float64
6	CASH_ADVANCE	8950	non-null	float64
7	PURCHASES_FREQUENCY	8950	non-null	float64
8	ONEOFF_PURCHASES_FREQUENCY	8950	non-null	float64
9	PURCHASES_INSTALLMENTS_FREQUENCY	8950	non-null	float64
10	CASH_ADVANCE_FREQUENCY	8950	non-null	float64
11	CASH_ADVANCE_TRX	8950	non-null	int64
12	PURCHASES_TRX	8950	non-null	int64
13	CREDIT_LIMIT	8949	non-null	float64
14	PAYMENTS	8950	non-null	float64
15	MINIMUM_PAYMENTS	8637	non-null	float64
16	PRC_FULL_PAYMENT	8950	non-null	float64
17	TENURE	8950	non-null	int64
dtyp	es: float64(14), int64(3), object(1)		

feature	description
custid	Unique identification of the credit cardholder (categorical)
balance	Balance amount left in the account for purchases
balancefrequency	Frequency of balance updates (0 = rarely, 1 = frequently)
purchases	Total amount spent on purchases
oneoffpurchases	Maximum single transaction purchase amount
installmentspurchases	Purchases made in installments
cash_advance	Cash advances taken by the user
purchasesfrequency	Frequency of purchases (0 = rarely, 1 = frequently)
oneoffpurchasesfrequency	Frequency of one-time purchases (0 = rarely, 1 = frequently)
purchasesinstallmentsfrequency	Frequency of installment purchases (0 = rarely, 1 = frequently)
cashadvancefrequency	Frequency of cash advances taken
cashadvancetrx	Number of cash advance transactions
purchasestrx	Number of purchase transactions
credit_limit	User's credit card limit
payments	Amount of payments made by the user
minimum_payments	Minimum payment amount made by the user
prcfullpayment	Percentage of the full payment made
tenure	Duration of credit card usage (in months)

Unsupervised Learning Supervised Learning EDA Preprocessing Introduction CUST_ID BALANCE BALANCE_FREQUENCY PURCHASES ONEOFF_PURCHASES 40.900749 0.818182 95.40 C10001 0.00 3202.467416 0.909091 0.00 0.00 C10002 773.17 2495.148862 1.000000 773.17 0.636364 1499.00 1499.00 C10004 1666.670542 817.714335 1.000000 16.00 C10005 16.00 INSTALLMENTS_PURCHASES CASH_ADVANCE PURCHASES_FREQUENCY ONEOFF_PURCHASES_FREQUENCY 95.4 0.000000 0.166667 0.000000 6442.945483 0.000000 0.000000 0.0 1.000000 1.000000 0.0 0.000000 0.083333 0.083333 0.0 205.788017 0.0 0.000000 0.083333 0.083333 PURCHASES_INSTALLMENTS_FREQUENCY CASH_ADVANCE_FREQUENCY CASH_ADVANCE_TRX 0.083333 0.000000 0 0.000000 0.250000 4 0.000000 0.000000 0.000000 0.083333 0.000000 0.000000 0 PURCHASES_TRX CREDIT_LIMIT MINIMUM_PAYMENTS PRC_FULL_PAYMENT TENURE PAYMENTS 201.802084 12 2 139.509787 0.000000 1000.0 12 0 7000.0 4103.032597 1072.340217 0.222222 12 622.066742 627.284787 0.000000 12 7500.0 7500.0 12 0.000000 0.000000 NaN 678.334763 12 1200.0 244.791237 0.000000 1

Quick Descriptive Statistics

	balance	balance_f	requency	р	urchases	oneoff_purcha	ases	\
count	8950.000000	895	0.000000	895	0.000000	8950.000	0000	
mean	1564.474828		0.877271	100	3.204834	592.437	7371	
std	2081.531879		0.236904	213	6.634782	1659.887	7917	
min	0.000000		0.000000		0.000000	0.000	0000	
25%	128.281915		0.888889	3	9.635000	0.000	0000	
50%	873.385231		1.000000	36	1.280000	38.000	0000	
75%	2054.140036		1.000000	111	.0.130000	577.405	5000	
max	19043.138560		1.000000	4903	9.570000	40761.250	0000	
	installments_p	urchases	cash_adv	ance	purchase	es_frequency \	\	
count	895	0.000000	8950.00	0000		8950.000000		
mean	41	1.067645	978.87	1112		0.490351		
std	90	4.338115	2097.16	3877		0.401371		
min		0.000000	0.00	0000		0.000000		
25%		0.000000	0.00	0000		0.083333		
50%	8	9.000000	0.00	0000		0.500000		
75%	46	8.637500	1113.82	1139		0.916667		
max	2250	0.000000	47137.21	1760		1.000000		
	oneoff_purchas	es_freque	ency purc	hases	_install	ments_frequency	/ \	
count		8950.000	000			8950.000000	ð	
mean		0.202	458			0.364437	7	
std		0.298	336			0.397448	3	
min		0.000	000			0.000000	ð	
25%		0.000	000			0.000000)	
50%		0.083	333			0.166667	7	
75%		0.300	0000			0.750000)	
max		1.000	000			1.000000	ð	

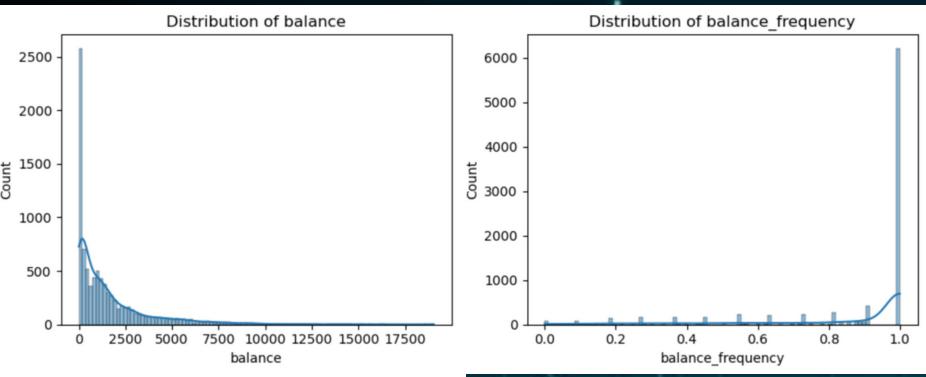
	cash_advance_	frequency	cash_ad	vance_trx	purchas	ses_trx	credit_limit	\
count	89.	50.000000	89	50.000000	8950.	000000	8950.000000	
mean		0.135144		3.248827	14.	709832	4494.282473	
std		0.200121		6.824647	24.	857649	3638.646702	
min		0.000000		0.000000	0.	000000	50.000000	
25%		0.000000		0.000000	1.	000000	1600.000000	
50%		0.000000		0.000000	7.	000000	3000.000000	
75%		0.222222		4.000000	17.	000000	6500.000000	
max		1.500000	1	23.000000	358.	000000	30000.000000	
	payments	minimum_p	ayments	prc_full_	payment	t	enure	
count	8950.000000	8950	.000000	8950	.000000	8950.0	00000	
mean	1733.143852	838	.393982	0	.153715	11.5	17318	
std	2895.063757	2335	.359598	0	.292499	1.3	38331	
min	0.000000	0	.000000	0	.000000	6.0	00000	
25%	383.276166	164	.378505	0	.000000	12.0	00000	
50%	856.901546	295	.620357	0	.000000	12.0	00000	
75%	1901.134317	794	.573294	0	.142857	12.0	00000	
max	50721.483360	76406	.207520	1	.000000	12.0	00000	
		- 1						

Quick Descriptive Statistics

	Skewness	Kurtosis	•
balance	2.393386	7.674751	
balance_frequency	-2.023266	3.092370	
purchases	8.144269	111.388771	
oneoff_purchases	10.045083	164.187572	
installments_purchases	7.299120	96.575178	
cash_advance	5.166609	52.899434	
purchases_frequency	0.060164	-1.638631	
oneoff_purchases_frequency	1.535613	1.161846	
<pre>purchases_installments_frequency</pre>	0.509201	-1.398632	
cash_advance_frequency	1.828686	3.334734	
cash_advance_trx	5.721298	61.646862	
purchases_trx	4.630655	34.793100	
credit_limit	1.522636	2.837371	
payments	5.907620	54.770736	
minimum_payments	13.814269	292.572223	
<pre>prc_full_payment</pre>	1.942820	2.432395	
tenure	-2.943017	7.694823	

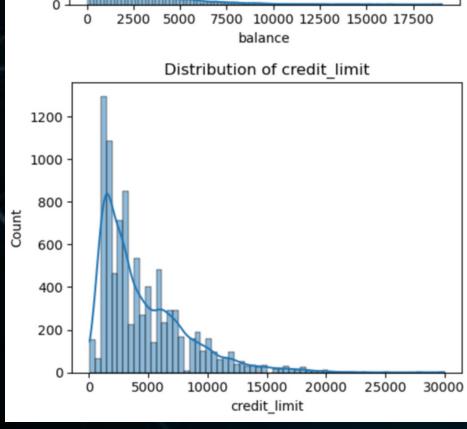
	Coefficient_of_Variation
balance	1.330499
balance_frequency	0.270047
purchases	2.129809
oneoff_purchases	2.801795
installments_purchases	2.199974
cash_advance	2.142431
purchases_frequency	0.818538
oneoff_purchases_frequency	1.473572
<pre>purchases_installments_frequency</pre>	1.090579
cash_advance_frequency	1.480799
cash_advance_trx	2.100650
purchases_trx	1.689866
credit_limit	0.809617
payments	1.670412
minimum_payments	2.785516
prc_full_payment	1.902871
tenure	0.116202

Group 1: Balance & Credit

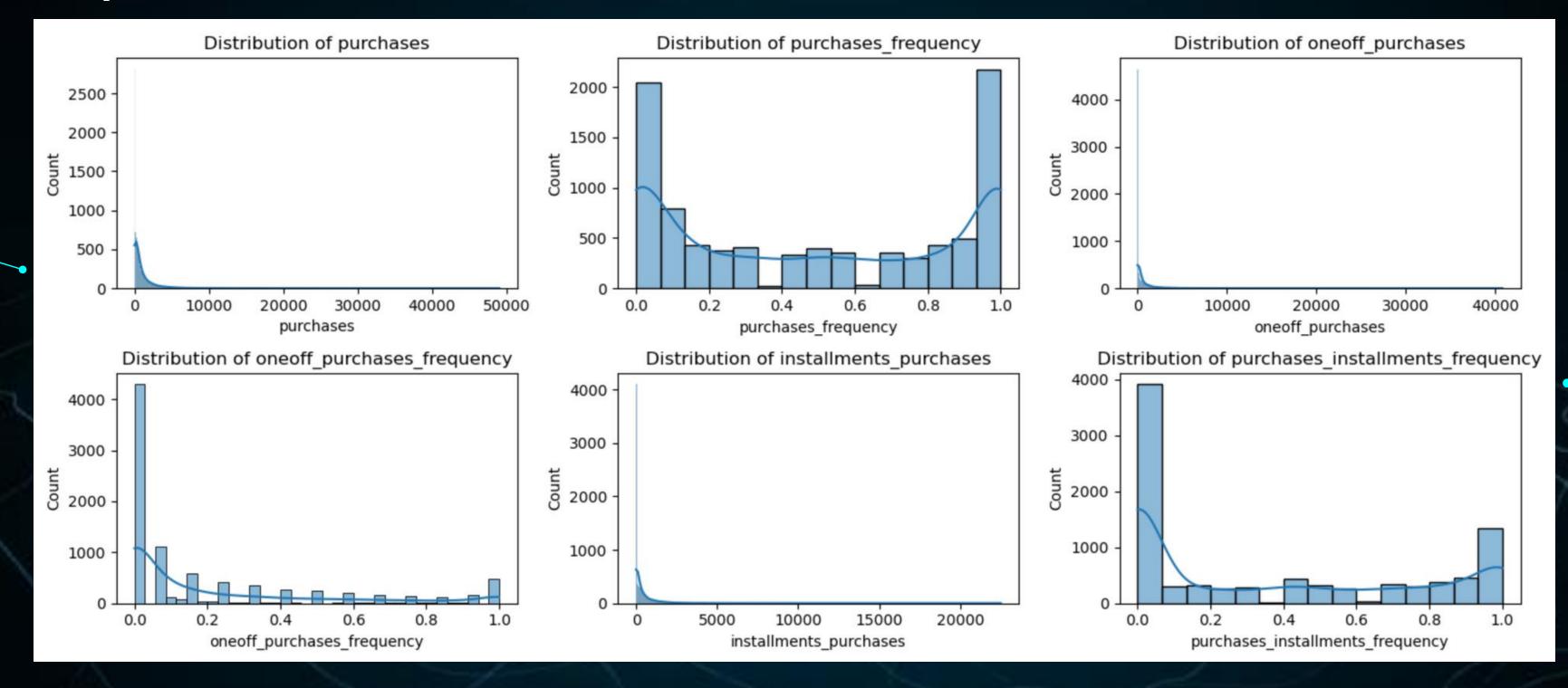


	balance	balance_frequency	credit_limit
count	8950.000000	8950.000000	8950.000000
mean	1564.474828	0.877271	4494.282473
std	2081.531879	0.236904	3638.646702
min	0.000000	0.000000	50.000000
25%	128.281915	0.888889	1600.000000
50%	873.385231	1.000000	3000.000000
75%	2054.140036	1.000000	6500.000000
max	19043.138560	1.000000	30000.000000

- Both ['balances'] and ['credit_limit'] show a **strong right-skewed** distribution.
- The majority of customers have a ['balance_frequency'] very close to 1.



Group 2: Purchases

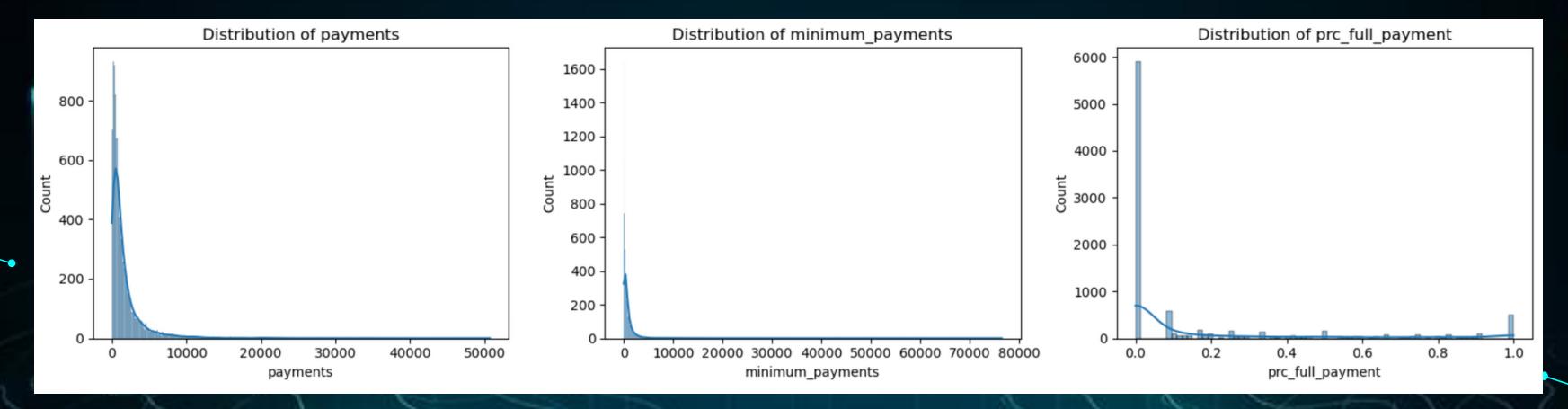


Group 2: Purchases

	purchases	purchases_frequency	oneoff_purchases	oneoff_purchases_frequency	installments_purchases	purchases_installments_frequency
count	8950.000000	8950.000000	8950.000000	8950.000000	8950.000000	8950.000000
mean	1003.204834	0.490351	592.437371	0.202458	411.067645	0.364437
std	2136.634782	0.401371	1659.887917	0.298336	904.338115	0.397448
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	39.635000	0.083333	0.000000	0.000000	0.000000	0.000000
50%	361.280000	0.500000	38.000000	0.083333	89.000000	0.166667
75%	1110.130000	0.916667	577.405000	0.300000	468.637500	0.750000
max	49039.570000	1.000000	40761.250000	1.000000	22500.000000	1.000000

- **Strongly right-skewed distributions** for ['purchases'], ['oneoff_purchases'], and ['installments_purchases']
- Bimodal frequency distributions for ['purchases_frequency'], ['purchases_installments_frequency']
 with two main customer types
- Most customers rarely make one-off purchases
- Highly skewed distributions for ['installment_frequency']

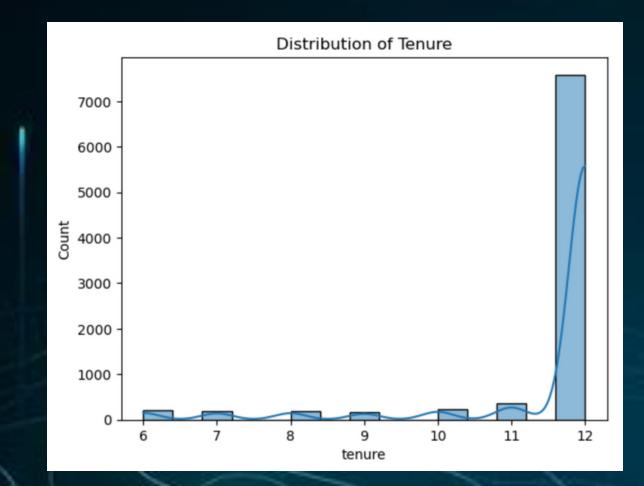
Group 3: Payment



	payments	minimum_payments	prc_full_payment
count	8950.000000	8950.000000	8950.000000
mean	1733.143852	838.393982	0.153715
std	2895.063757	2335.359598	0.292499
min	0.000000	0.000000	0.000000
25%	383.276166	164.378505	0.000000
50%	856.901546	295.620357	0.000000
75%	1901.134317	794.573294	0.142857
max	50721.483360	76406.207520	1.000000

- Both ['payments'] and ['minimum payments'] distributions are extremely right-skewed
- ['prc_full_payment'] distribution is sharply concentrated at
 O and also has a visible spike at 1. Most customers either never pay their balance in full (prc_full_payment ≈ 0), or always pay it off in full (prc_full_payment = 1)

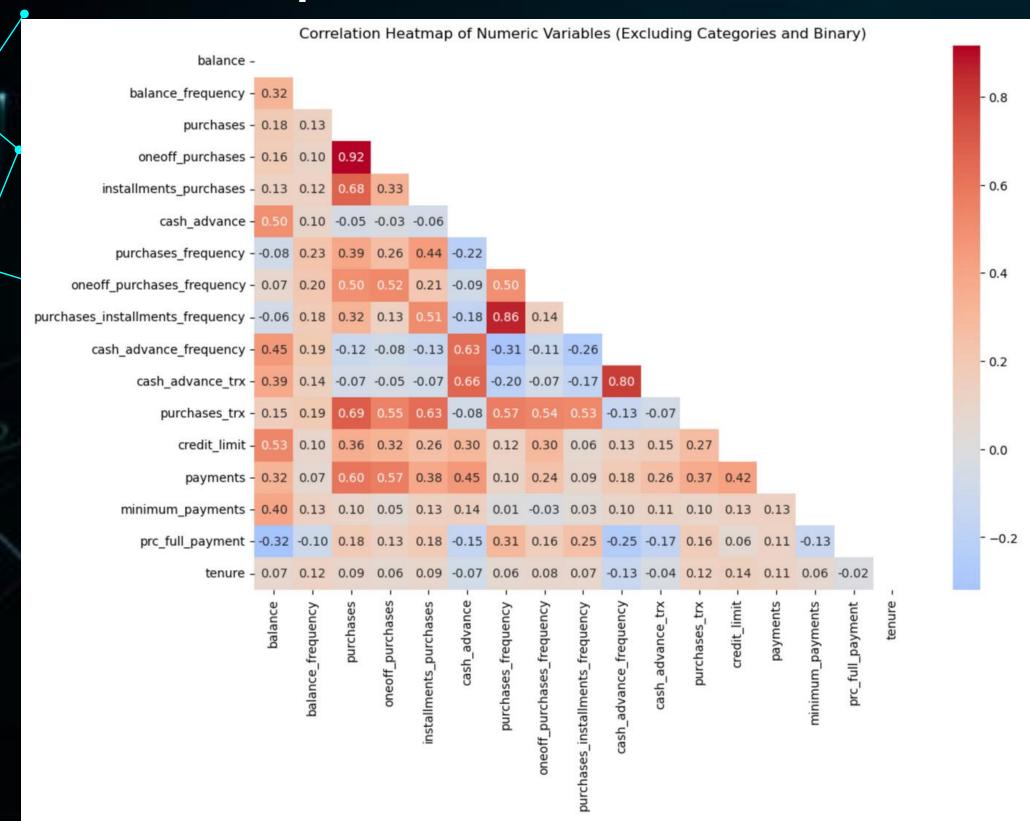
Group 4: Tenure



count	8950.000000
mean	11.517318
std	1.338331
min	6.000000
25%	12.000000
50%	12.000000
75%	12.000000
max	12.000000
Name:	tenure, dtype: float64

The distribution is *extremely right-skewed*: most customers (overwhelming majority) have a tenure of 12, while only a small number have values between 6 and 11 → most customers have reached the maximum tenure period tracked in the data, reflecting long-term engagement or a batch cohort scenario.

Relationship Detection



- Strongest Correlations:
 - Purchases & Oneoff Purchases (0.92)
 - Installments Purchases & Purchases (0.68)
- Purchase-related frequencies:
 - oneoff_purchases_frequency vs oneoff_purchases (0.52), purchases_installments_frequency vs installments_purchases (0.86)
 - Cash Advance Trx & Cash Advance Frequency (0.80)
 - Balance & Credit Limit (0.53)
- Additional Noteworthy Relationships:
 - Payments with Purchases (0.60), Oneoff (0.57),
 Installments (0.57):
 - Minimum Payments & Balance (0.40)
 - Cash Advance with Balance (0.50) and frequency (0.45)
- Negative or Inverse Relationships
 - Full Payment Ratio & Balance (-0.32), and Minimum Payments (-0.25):
- Weak or Uninformative Correlations
 - Tenure has no strong correlation with monetary or frequency features

balance	0
balance_frequency	0
purchases	0
oneoff_purchases	0
installments_purchases	0
cash_advance	0
purchases_frequency	0
oneoff_purchases_frequency	0
<pre>purchases_installments_frequency</pre>	0
cash_advance_frequency	0
cash_advance_trx	0
purchases_trx	0
credit_limit	1
payments	0
minimum_payments	313
prc_full_payment	0
tenure	0
dtype: int64	

balance	0
balance_frequency	0
purchases	0
oneoff_purchases	0
installments_purchases	0
cash_advance	0
purchases_frequency	0
oneoff_purchases_frequency	0
purchases_installments_frequency	0
cash_advance_frequency	0
cash_advance_trx	0
purchases_trx	0
credit_limit	1
payments	0
minimum_payments	313
prc_full_payment	0
tenure	0
dtype: int64	

Missing Values Proccessing ['credit_limit']

balancebalance_frequencypurchasescredit_limitpaymentsminimum_payments520318.4004720.1666670.0NaN9.04001714.418723

purchases

0.0

14.418723

credit_limit payments minimum_payments

9.040017

Missing Values Processing ['credit_limit']

5203 18.400472

balance_frequency	0
purchases	0
oneoff_purchases	0
installments_purchases	0
cash_advance	0
purchases_frequency	0
oneoff_purchases_frequency	0
<pre>purchases_installments_frequency</pre>	0
cash_advance_frequency	0
cash_advance_trx	0
purchases_trx	0
credit_limit	1
payments	0
minimum_payments	313
<pre>prc_full_payment</pre>	0
tenure	0
dtype: int64	

balance

				ij.	
	count	8949.0000	0 0		ŀ
	mean	4494.44945	50		Ī
	std	3638.81572	25		ŀ
	min	50.00000	0 0		ł
	25%	1600.00000	0 0		
	50%	3000.00000	00		
	75%	6500.00000	0 0		
	max	30000.00000	0 0		
Z	Name:	<pre>credit_limit,</pre>	dtype:	float64	_

balance_frequency

0.166667

14.418723

credit_limit payments minimum_payments

9.040017

NaN

Missing Values Proccessing ['credit_limit']

5203 18.400472

balance	0
balance_frequency	0
purchases	0
oneoff_purchases	0
installments_purchases	0
cash_advance	0
purchases_frequency	0
oneoff_purchases_frequency	0
<pre>purchases_installments_frequency</pre>	0
cash_advance_frequency	0
cash_advance_trx	0
purchases_trx	0
credit_limit	1
payments	0
minimum_payments	313
prc_full_payment	0
tenure	0
dtype: int64	

```
8949.000000
count
          4494.449450
mean
          3638.815725
std
            50.000000
min
25%
          1600.000000
50%
          3000.000000
75%
          6500.000000
         30000.000000
max
Name: credit_limit, dtype: float64
```

balance balance_frequency

0.166667

purchases

0.0

['minimum_payment']

balance	0
balance_frequency	0
purchases	0
oneoff_purchases	0
installments_purchases	0
cash_advance	0
purchases_frequency	0
oneoff_purchases_frequency	0
<pre>purchases_installments_frequency</pre>	0
cash_advance_frequency	0
cash_advance_trx	0
purchases_trx	0
credit_limit	1
payments	0
minimum_payments	313
prc_full_payment	0
tenure	0
dtype: int64	

['minimum_payment']

balance	0
balance_frequency	0
purchases	0
oneoff_purchases	0
installments_purchases	0
cash_advance	0
purchases_frequency	0
oneoff_purchases_frequency	0
<pre>purchases_installments_frequency</pre>	0
cash_advance_frequency	0
cash_advance_trx	0
purchases_trx	0
credit_limit	1
payments	0
minimum_payments	313
prc_full_payment	0
tenure	0
dtype: int64	

If ['payment'] is 0 and ['minimum_payment'] is missing:
It is assumed that the customer has not made any payments,

['minimum_payment'] is set to 0.

['minimum_payment']

balance	0
balance_frequency	0
purchases	0
oneoff_purchases	0
installments_purchases	0
cash_advance	0
purchases_frequency	0
oneoff_purchases_frequency	0
purchases_installments_frequency	0
cash_advance_frequency	0
cash_advance_trx	0
purchases_trx	0
credit_limit	1
payments	0
minimum_payments	313
prc_full_payment	0
tenure	0
dtype: int64	

If ['payment'] is 0 and ['minimum_payment'] is missing:
It is assumed that the customer has not made any payments,

['minimum_payment'] is set to 0.

If ['payment'] is less than the average payment and ['minimum_payment'] is missing:

It is assumed that the minimum payment is roughly equal to the payment itself (since the customer might be paying close to the minimum).

Missing Values Processing ['minimum_payment']

If ['payment'] is 0 and ['minimum_payment'] is missing:

It is assumed that the customer has not made any payments,

['minimum_payment'] is set to 0.

If ['payment'] is less than the average payment and ['minimum_payment'] is missing:

It is assumed that the minimum payment is roughly equal to the payment itself (since the customer might be paying close to the minimum).

For all other cases where ['minimum_payment'] is missing:

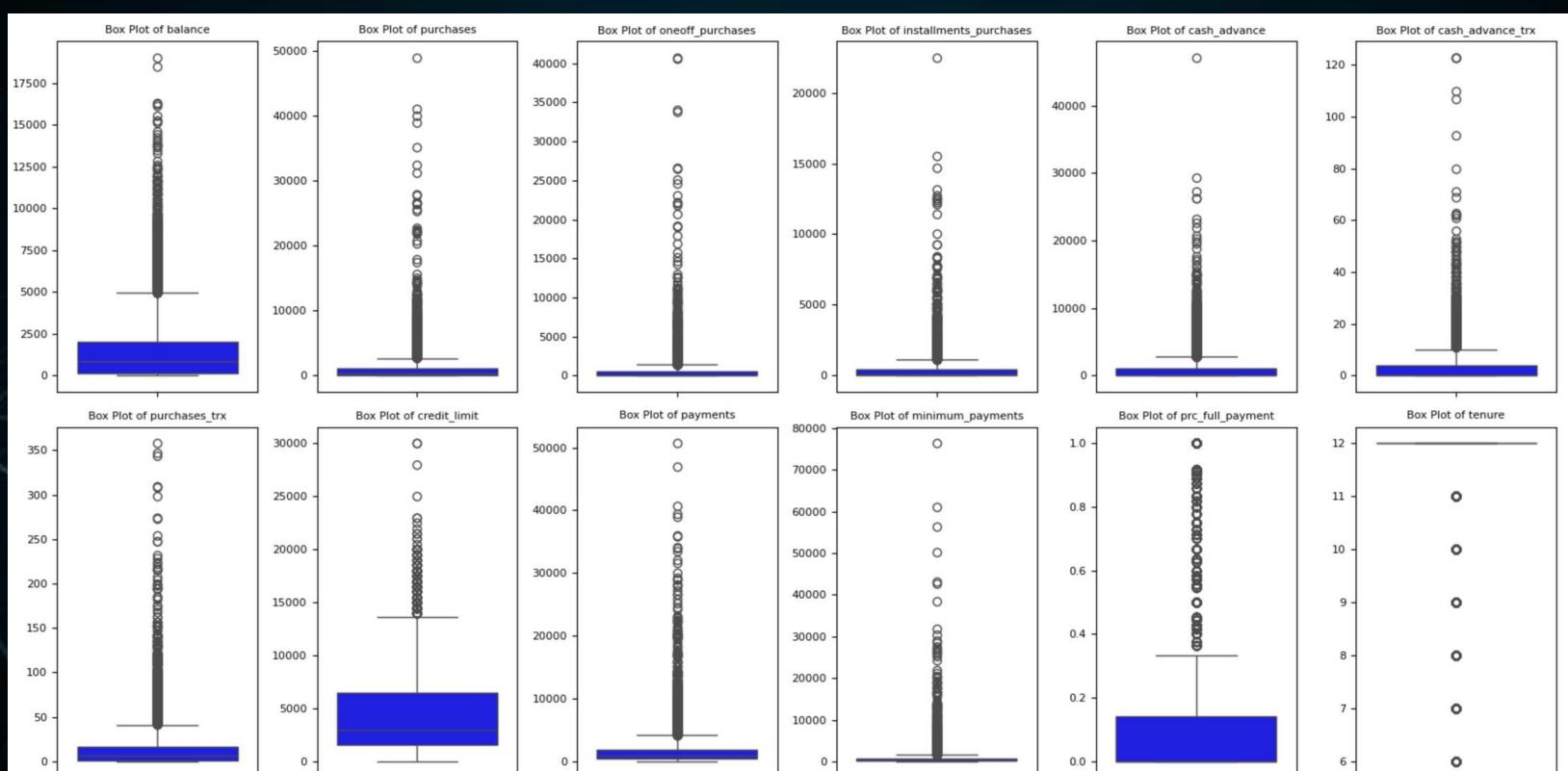
We set it to the average of all ['payment'] to ensure that missing values are replaced with a reasonable estimate.

balance	0
balance_frequency	0
purchases	0
oneoff_purchases	0
<pre>installments_purchases</pre>	0
cash_advance	0
purchases_frequency	0
oneoff_purchases_frequency	0
<pre>purchases_installments_frequency</pre>	0
cash_advance_frequency	0
cash_advance_trx	0
purchases_trx	0
credit_limit	1
payments	0
minimum_payments	313
prc_full_payment	0
tenure	0
dtype: int64	

['minimum_payment']

```
balance
balance_frequency
purchases
oneoff_purchases
installments_purchases
cash_advance
purchases_frequency
oneoff_purchases_frequency
purchases_installments_frequency
cash_advance_frequency
cash_advance_trx
purchases_trx
credit_limit
payments
                                    313
minimum_payments
prc_full_payment
tenure
dtype: int64
```

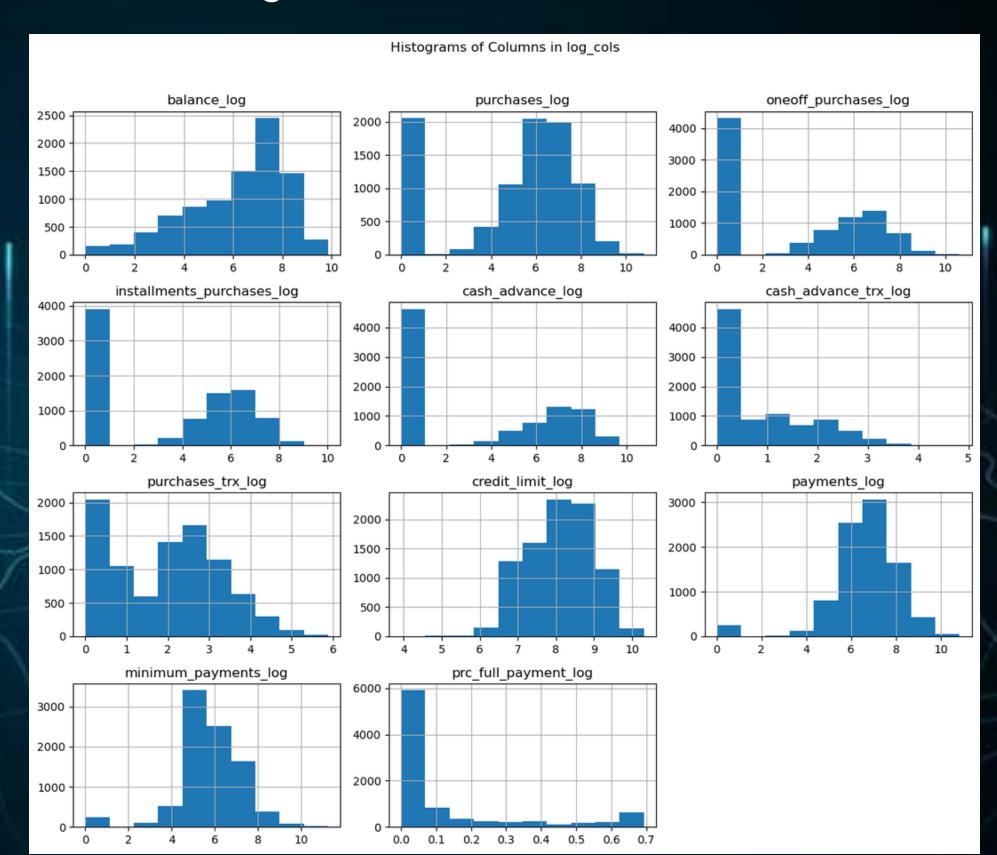
```
if min_payment_missing:
    if payment == 0:
        min_payments_filled.iloc[idx] = 0  # If no payment was made, set min_payment to 0
    elif payment < avg_payment:
        min_payments_filled.iloc[idx] = payment  # If payment is below average, use the same payment value else:
        min_payments_filled.iloc[idx] = avg_payment  # Otherwise, use the average payment</pre>
```



Outliers Dectection and Log Transformation

```
log_cols = []

for col in numeric_cols_filtered:
    new_col_name = f"{col}_log"
    df[new_col_name] = np.log1p(df[col])
    log_cols.append(new_col_name)
```



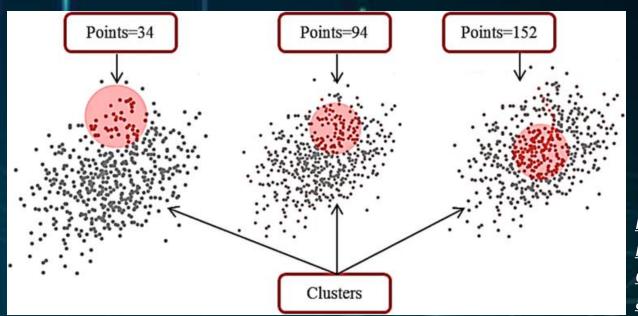
Distance-based clustering methods will be deployed in the project:

- 1. K-Means
- 2.MiniBatch K-Means
- 3. Hierarchical
- 4.GMM Gaussian Mixture Model
- 5.Spectral

6.DBSCAN

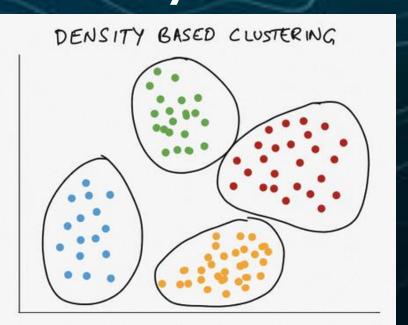
7.HDBSCAN

Centroid-based



https://www.researchgate. net/figure/Centroid-basedclusteringalgorithm fig6 334279038

Density-based



<u>https://www.graduatetutor.com/statistics-tutor/k-means-clustering-hierarchical-clustering-density</u>
based-clustering-partitional-clustering/

1. K-Means

2.MiniBatch K-Means

3. Hierarchical

4.GMM - Gaussian Mixture Model

5.Spectral

6.DBSCAN

7.HDBSCAN

How Scaling Effects Distance based algorithms

Medium

• Distance Dependence: These algorithms rely heavily on calculating distances between data points to determine similarity or make classifications.

- Feature Dominance: Without scaling, features with larger magnitudes or ranges can disproportionately influence distance calculations, making them seem more important than features with smaller ranges, even if the smaller-ranged features hold more predictive power. For instance, if you have features like age (0-100) and income (thousands of dollars), income's larger numerical values will dominate the distance calculations in unscaled data.
- Skewed Results: This dominance can lead to biased or inefficient learning, resulting in suboptimal performance and reduced accuracy.
- Ensuring Equal Contribution: Feature scaling techniques (like Min-Max scaling or standardization) transform features to a common scale, ensuring that each feature contributes equally to the distance calculations, regardless of its original magnitude

```
scaler = StandardScaler()

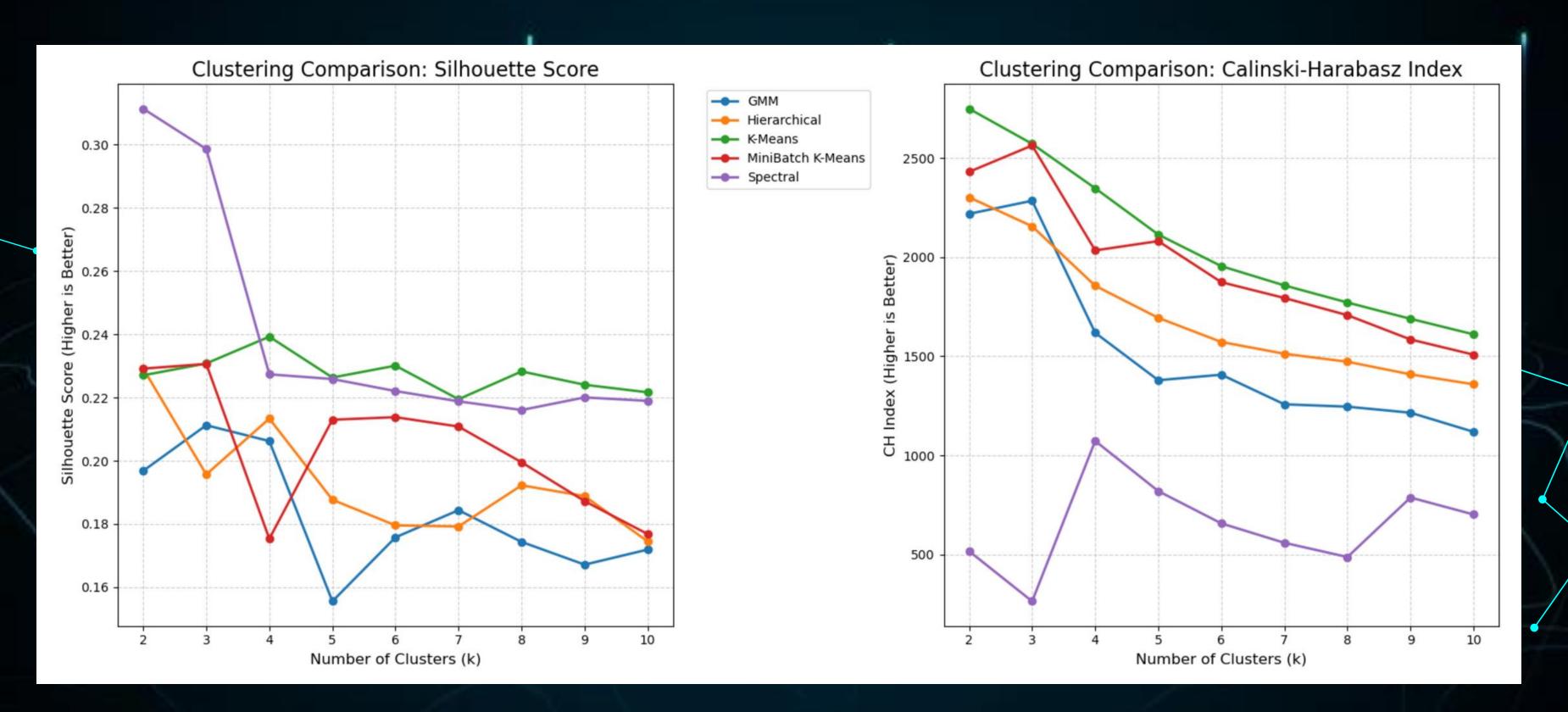
df_group = df[group_cols]

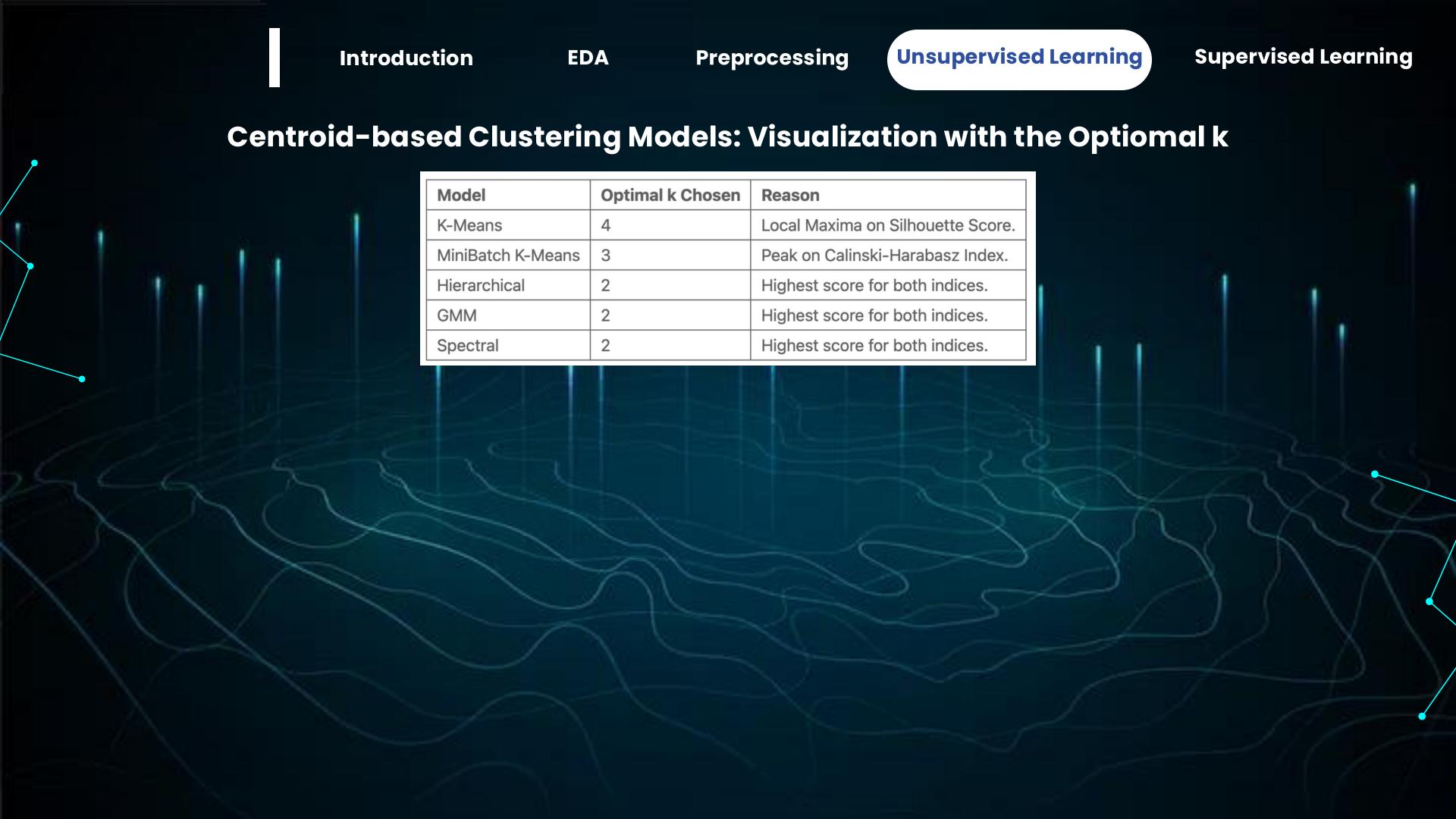
# Fit and Transform

df_group_scaled = scaler.fit_transform(df_group)

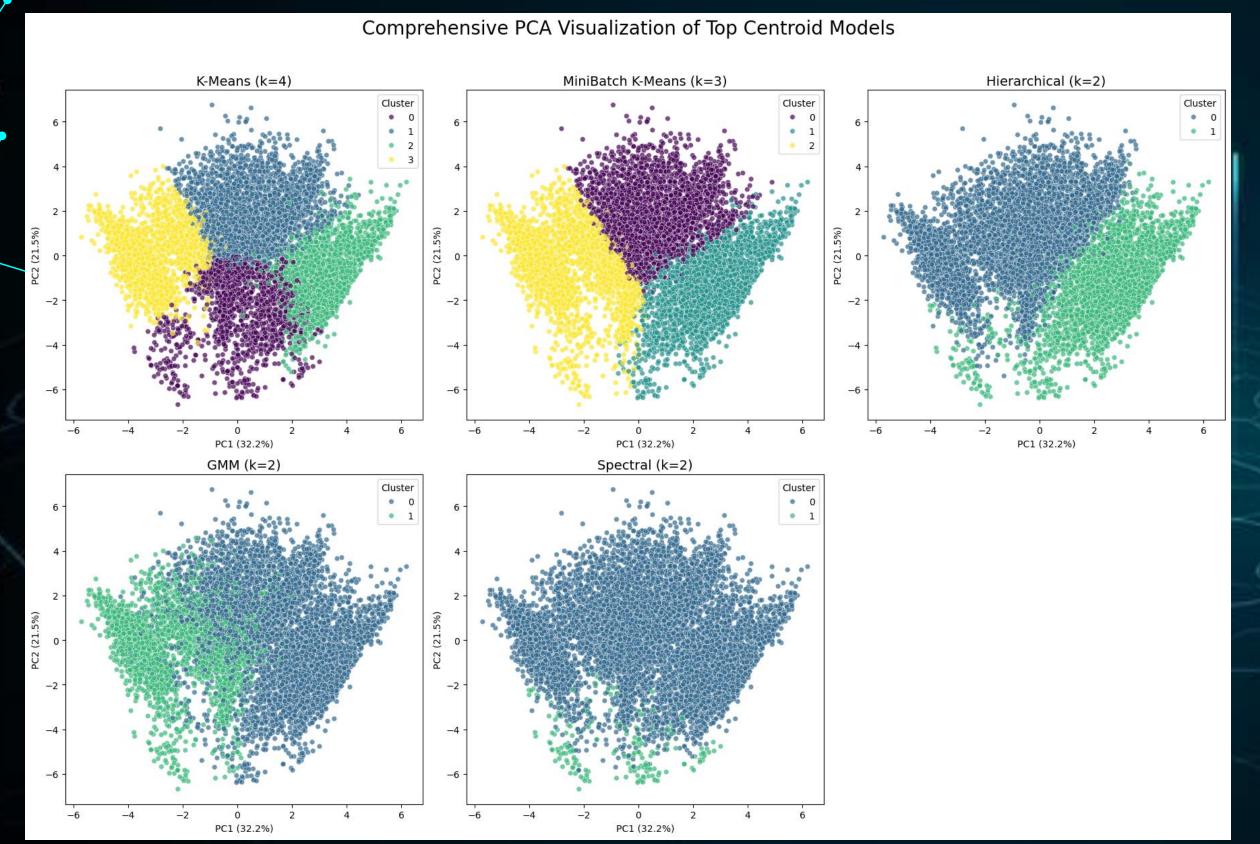
df_group_scaled = pd.DataFrame(df_group_scaled, columns=group_cols, index=df.index)
```

Centroid-based Clustering Models: Silhouette and Calinski-Harabasz Index

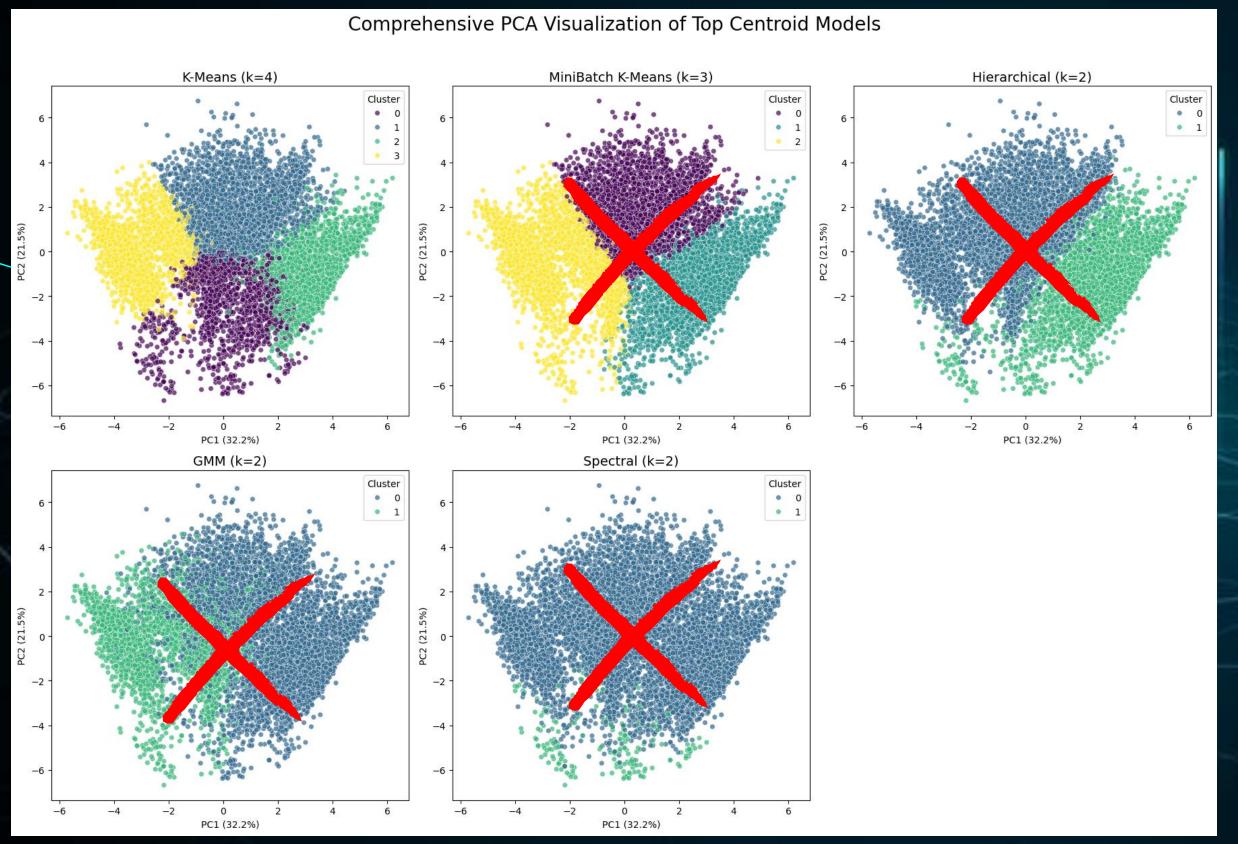




Centroid-based Clustering Models: Visualization with the Optiomal k

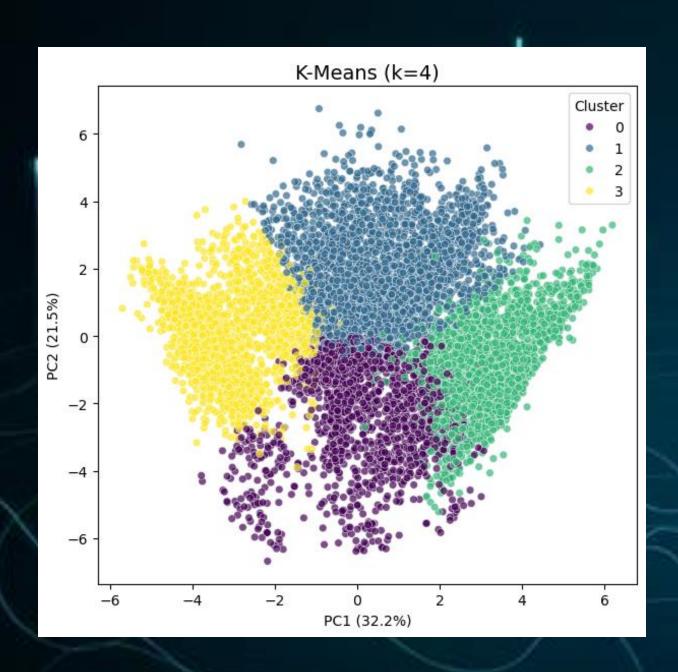


Centroid-based Clustering Models: Visualization with the Optiomal k



- **Spectral** (highest Silhouette Score at k=2, its PCA visualization reveals a chaotic and unstructured separation. The blue and green data points appear almost randomly interwoven.
- Hierarchical (k=2): Creates a very clear separation along the PC1 axis (left vs. right). This is the most fundamental split, based on the attribute with the highest variance.
- GMM (k=2): Separates the data along a more subtle, diagonal axis. This indicates that the GMM is attempting to find elliptical or density-based clusters rather than enforcing a rigid, variance-based split.

Centroid-based Clustering Models: choosing K-Means as the best method



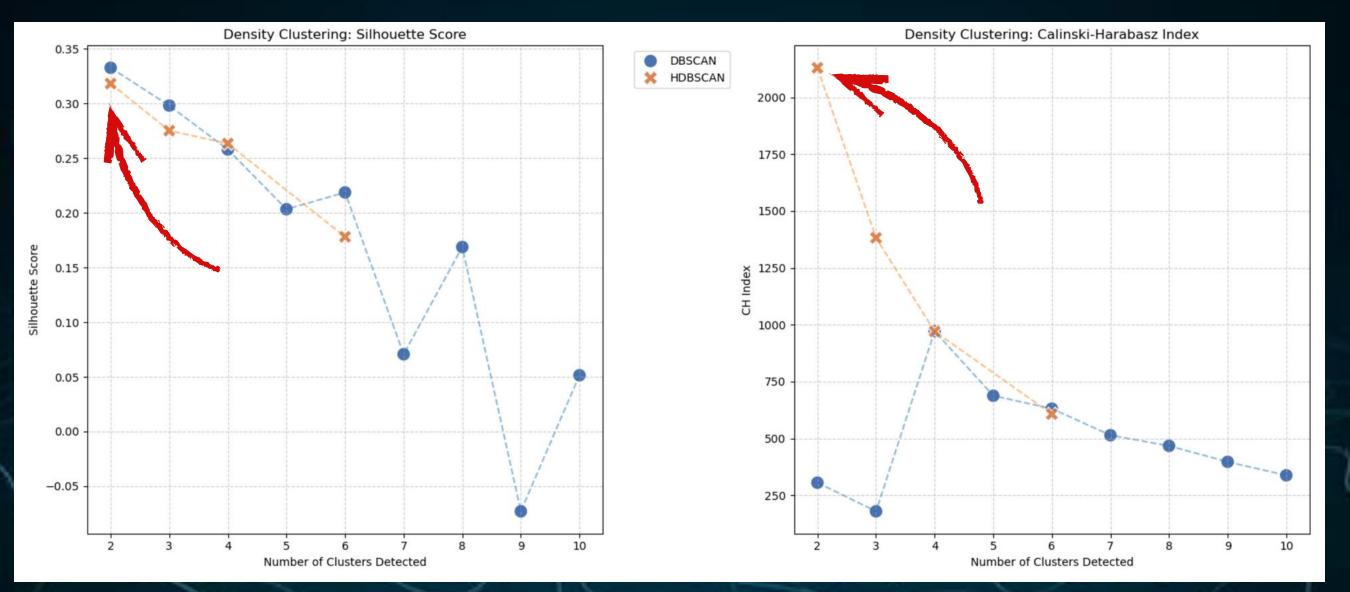
K-Means is the only model (among those with k > 2) that clearly exhibits a four-quadrant structure:

- PC1 splits the data horizontally (Left/Right).
- PC2 splits the data vertically (Up/Down).

→ Business Insight: choosing k=4 has a geometric basis. It is not an arbitrary split but a natural division along the two primary axes of data variation. This aligns perfectly with the business logic of segmenting into four groups: High-High, High-Low, Low-High, and Low-Low.

Supervised Learning

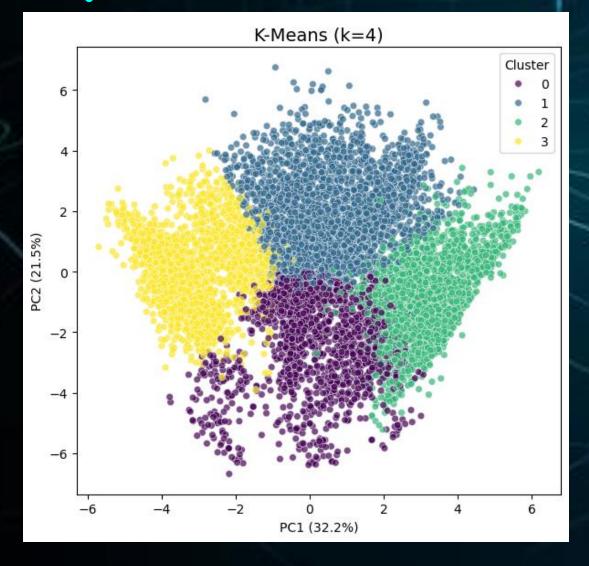
Density-based Clustering Models: Silhouette and Calinski-Harabasz Index

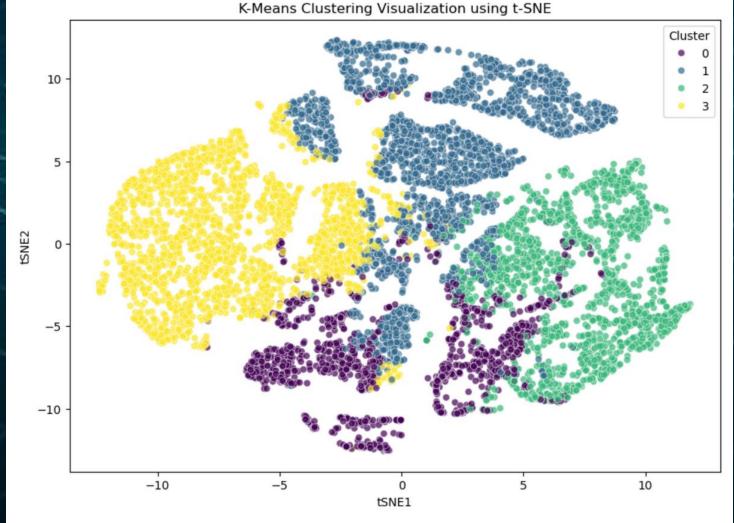


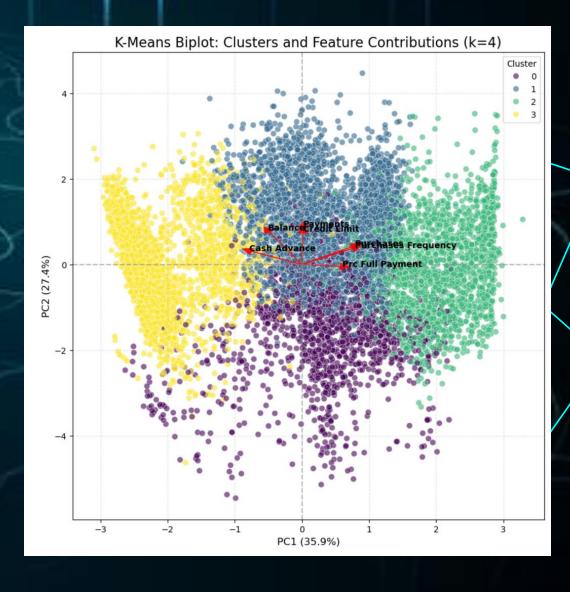
- **Silhouette Score**: k=2 with highest scores. These algorithms focus on local density and remove noise (-1), they discover two or three extremely cohesive and well-separated clusters.
- Calinski-Harabasz Index: HDBSCAN with highest score at k=2. Both models show a rapid declining trend, and their scores at larger k values are very low.
- The performance of two models is very volatile, especially beyond k=4. The Silhouette Score drops sharply and even becomes negative at k=9 for DBSCAN, indicating a complete breakdown of the cluster structure.

Best Clustering Model

- Based on the balance between technical performance and feasibility in credit business operations, we choose K-Means
 with k=4.
- Technical Reason: Although Density-based models achieved higher Silhouette Scores, K-Means excels in CH Index, demonstrating better overall dispersion and separation, while being more stable and easier to interpret.
- Business Reason: In the Credit sector, we need to know who the "Noise" customers are (as they could represent either risks or potential opportunities). K-Means assigns labels to everyone, providing 4 actionable segments that you require.

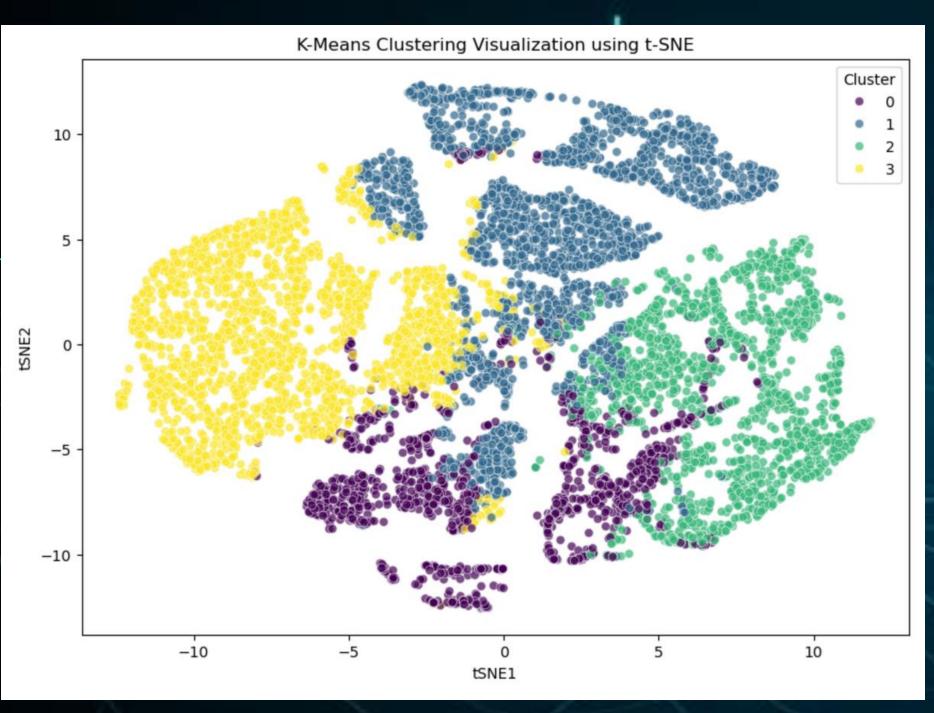






EDA

K-Means Cluster Visual Insights: t-SNE



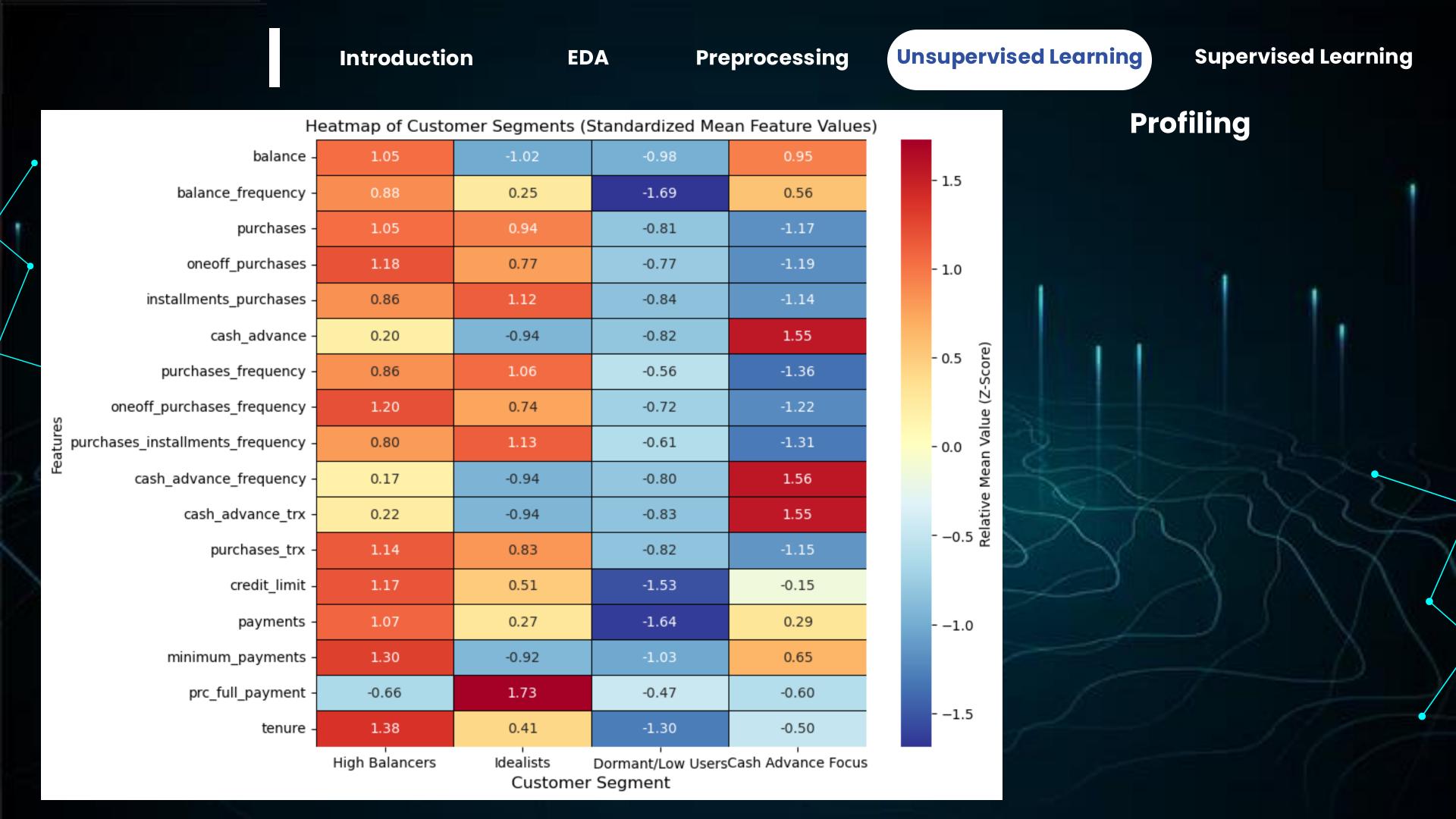
- Cluster 3 (Yellow) and Cluster 1 (Blue) form two large, almost opposing blocks.
- Cluster 0 (Purple) and Cluster 2 (Green) are located close to each other and have more intermingled points.
- Conclusion: This overlap reinforces the point of the low Silhouette Score (k=4, ≈ 0.24), indicating these two groups have the most similar characteristics and are the most difficult to distinguish. This is an area where the business team needs to pay special attention when designing campaigns.

EDA

K-Means Cluster Visual Insights: Biplot



- Cluster 0 (**Purple**) and Cluster 2 (**Green**) have significant overlap, explaining the low Silhouette Score and requiring attention for campaign deployment.
- Two main opposing customer groups:
 - Risk Group (Cluster 3 Yellow): Characterized by high
 Cash_Advance and Balance. This group uses cash
 frequently and is considered higher risk.
 - Ideal Group (Cluster 2 Green): Characterized by high Purchases_Frequency and Pre_Full_Payment. This group shops frequently and has responsible payment habits.
- A clear negative correlation exists between Cash_Advance and Pre_Full_Payment. Customers who frequently use cash advances tend to rarely make full payments, and vice versa.



Introduction EDA Preprocessing Unsupervised Learning Supervised Learning

Mean Value Heatmap (Original Values, Row-wise Scaling)

Profiling

balance 2,481.11 2,380.50 214.32 256.13 balance_frequency -0.986 0.886 0.578 0.934 purchases -1,766.47 1,681.94 352.89 74.07 oneoff_purchases -1,071.07 897.13 241.15 65.87 installments_purchases -695.59 785.19 112.55 8.25 cash advance -1,006.30 34.99 139.80 2,158.85 purchases_frequency -0.765 0.831 0.309 0.052 oneoff_purchases_frequency -0.036 0.352 0.292 0.101 Features purchases_installments_frequency -0.576 0.664 0.201 0.014 cash advance frequency -0.136 0.007 0.024 0.297 cash_advance_trx -3.39 0.121 0.421 7.13 0.795 purchases_trx -27.21 4.59 23.65 credit_limit -5,217.22 4,271.29 4,740.86 3,278.25 payments 2,270.61 1,783.30 619.43 1,792.97 minimum_payments 217.82 1,076.65 1,431.10 160.34 prc_full_payment -0.582 0.063 0.033 0.019 11.38 11.77 11.57 11.22 tenure -Idealists **High Balancers** Cash Advance Focus Dormant/Low Users **Customer Segment**

Introduction EDA Preprocessing Unsupervised Learning

Mean Value Heatmap (Original Values, Row-wise Scaling) balance 2,481.11 2,380.50 214.32 256.13 balance frequency 0.986 0.578 0.934 0.886 74.07 purchases 1,766.47 1.681.94 352.89 oneoff_purchases -65.87 1,071.07 897.13 241.15 installments_purchases -695.59 8.25 785.19 112.55 cash advance -1,006.30 34.99 139.80 2,158.85 purchases frequency -0.052 0.309 0.765 0.831 oneoff purchases frequency -0.352 0.292 0.101 0.036 purchases_installments_frequency -0.014 0.576 0.664 0.201 cash advance frequency -0.136 0.297 0.007 0.024 cash advance trx -7.13 3.39 0.121 0.421 0.795 purchases_trx -27.21 23.65 4.59 5,217.22 credit limit -4,740.86 3,278.25 4,271.29 2,270.61 1,783.30 619.43 1,792.97 payments minimum payments 1,431.10 1,076.65 217.82 160.34 prc full payment -0.033 0.019 0.582 0.063 11.77 11.57 11.22 11.38 tenure Idealists Cash Advance Focus **High Balancers** Dormant/Low Users **Customer Segment**

Profiling

Supervised Learning

Based on the behavioral analysis:

- Cluster 1: **HIGH BALANCERS** (High Spending
 - + High Interest Debt)
- Cluster 2: IDEALISTS (Good Payment + Good Spending)
- Cluster 0: DORMANT (Inactive/Low Usage)
- Cluster 3: CASH ADVANCE FOCUS (Cash Withdrawal + Low Purchases)

Business Interpretation: Profiling Analysis and Recommended Actions

Final Customer Segmentation Profile

Cluster ID	Segment Name	Proportion	Key Characteristics	Risk & Profitability Profile
2	Idealists	~22%	High full payment rate, Highest purchase frequency, Healthy usage	Sustainable Profit: Lowest risk, healthy spending behavior
1	High Balancers	~31%	Highest average balance (\$1,648), High purchases	Maximum Profit: High interest revenue but highest credit risk
3	Cash Advance Focus	~29%	Highest cash advances (\$2,159), Very low purchases	Urgent Risk: Liquidity stress signals, highest default risk
0	Dormant/Low Users	~18%	Lowest balance and purchases	Churn Risk: Low profitability, high competitive vulnerability

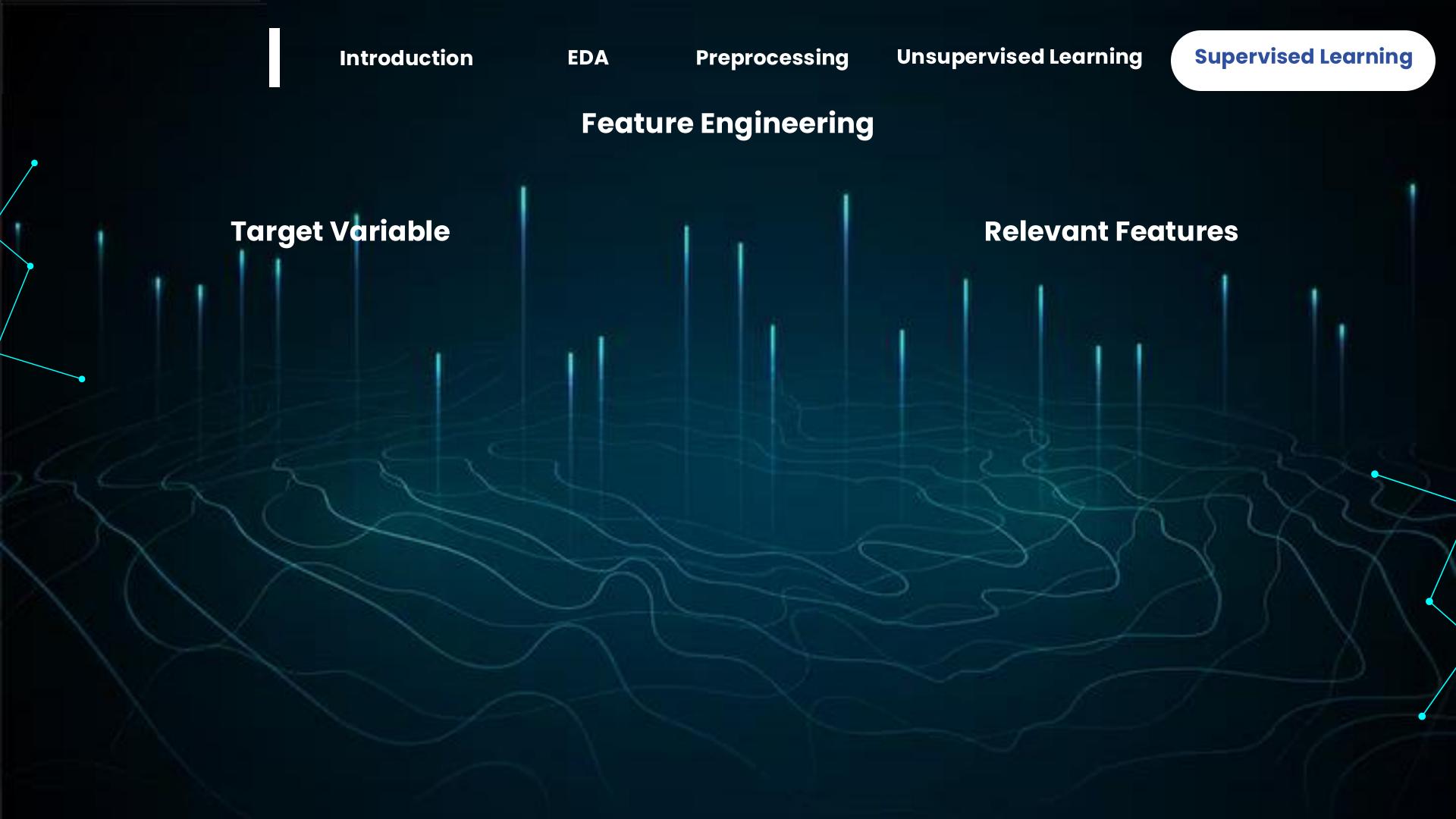
Strategic Recommendations & Campaigns

Segment	Strategic Objective	Recommended Campaigns
2: Idealists	Retention & Spending Growth: Increase LTV through brand advocacy	Proactive Upgrades : Platinum/Signature cards (no/low annual fees), higher limits, exclusive benefits
1: High Balancers	Profit Maximization & Debt Stabilization: Maintain interest revenue while controlling debt	Loan Product Cross-sell: Balance transfer offers, personal loans to reduce interest burden and stabilize debt
3: Cash Advance Focus	Risk Mitigation & Behavior Change: Shift from cash advances to purchases	Risk Management: Close DPD monitoring, cash advance limits, cashback/discount offers for first purchases
0: Dormant/Low Users	Reactivation & Re-engagement: Bring customers back to card usage	"Re-use" Campaign: Low-barrier offers like cashback after 3 small transactions, fee waivers

Duration of credit card usage (in months)

tenure

Supervised Learning



Relevant Features

Supervised Learning

High-Risk Customer Identification Logic:

Target Variable

- Condition 1: minimum_payments > payments: Customers are paying only the minimum required amount instead of the actual payment due. This behavior indicates potential financial distress, as customers who can only afford minimum payments may be struggling to manage their debt obligations and are at higher risk of default.
- Condition 2: balance > credit_limit * 0.8: Customers are utilizing over 80% of their available credit limit. This creates high over-limit risk, as customers approaching their credit ceiling have limited financial flexibility and are more likely to exceed their credit limits, indicating potential cash flow problems.
- Condition 3: High cash advance frequency (for example, >=50% of the time) is an important risk indicator in credit. This behavior often signals customer liquidity problems, where the credit card is used as a short-term loan, serving as a strong warning sign of potential impending financial distress.

Target Variable

```
df_sl['is_high_risk'] = (
    (df_sl['minimum_payments'] > df_sl['payments']) |
    (df_sl['payments'] <= 1.0) |
    (df_sl['balance'] > df_sl['credit_limit'] * 0.8)
).astype(int)
```

TARGET VARIABLE DISTRIBUTION:

```
is_high_risk
```

0 5707

1 3243

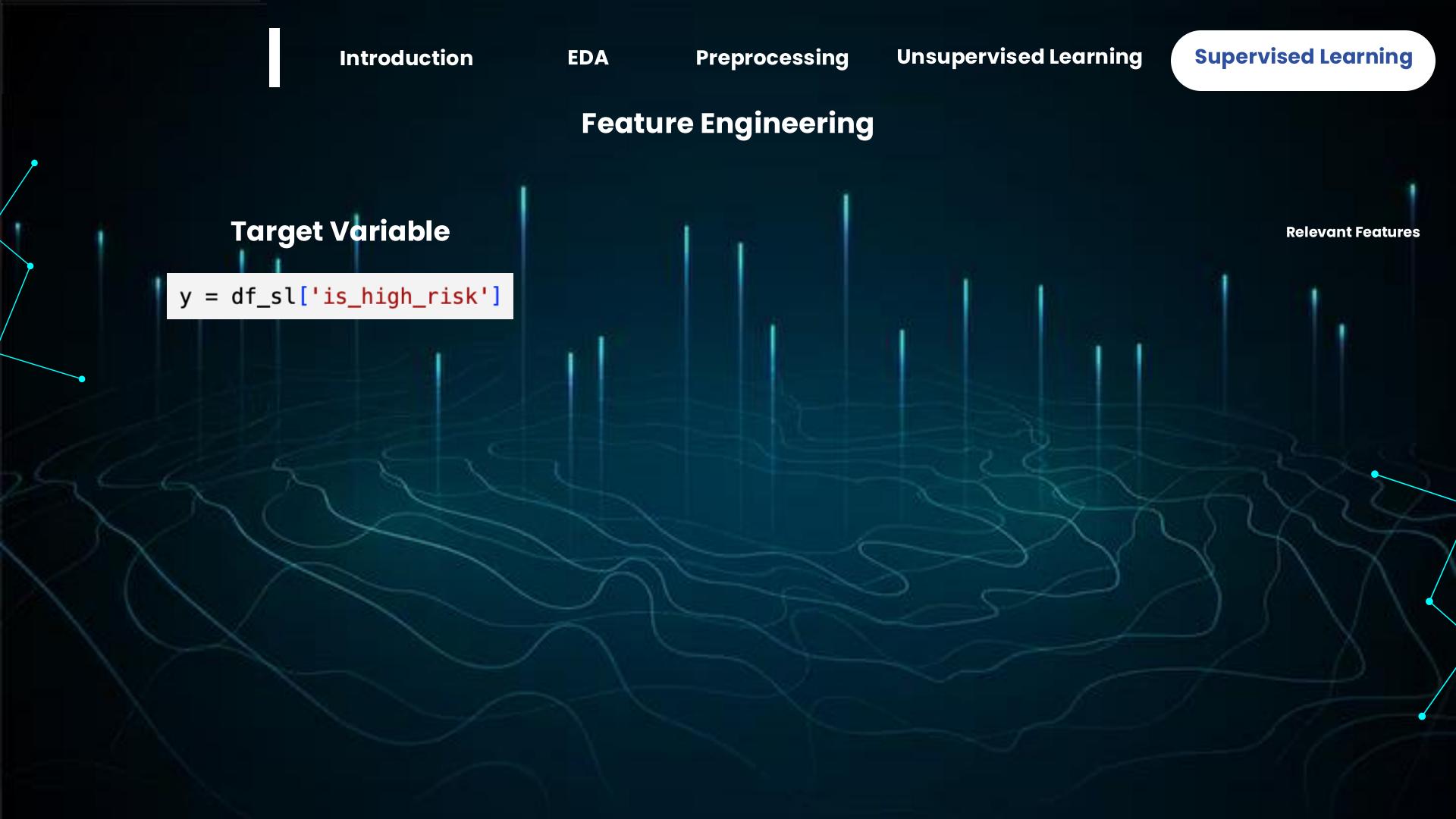
Name: count, dtype: int64

Total samples: 8950

High Risk ratio (1): 36.23%

```
y = df_sl['is_high_risk']
```

Relevant Features



Target Variable

y = df_sl['is_high_risk']

Correlation with y

cash_advance_frequency	0.192777
cash_advance_trx	0.113223
tenure	-0.073761
purchases_trx	-0.144155
purchases_frequency	-0.236698
<pre>prc_full_payment</pre>	-0.363532

Relevant Features

```
X = df_sl[[
    'prc_full_payment',
    'cash_advance_frequency',
    'purchases_frequency',
    'tenure',
    'cash_advance_trx',
    'purchases_trx']]
```

Target Variable

y = df_sl['is_high_risk']

Correlation with y

cash_advance_frequency	0.192777
cash_advance_trx	0.113223
tenure	-0.073761
purchases_trx	-0.144155
purchases_frequency	-0.236698
<pre>prc_full_payment</pre>	-0.363532

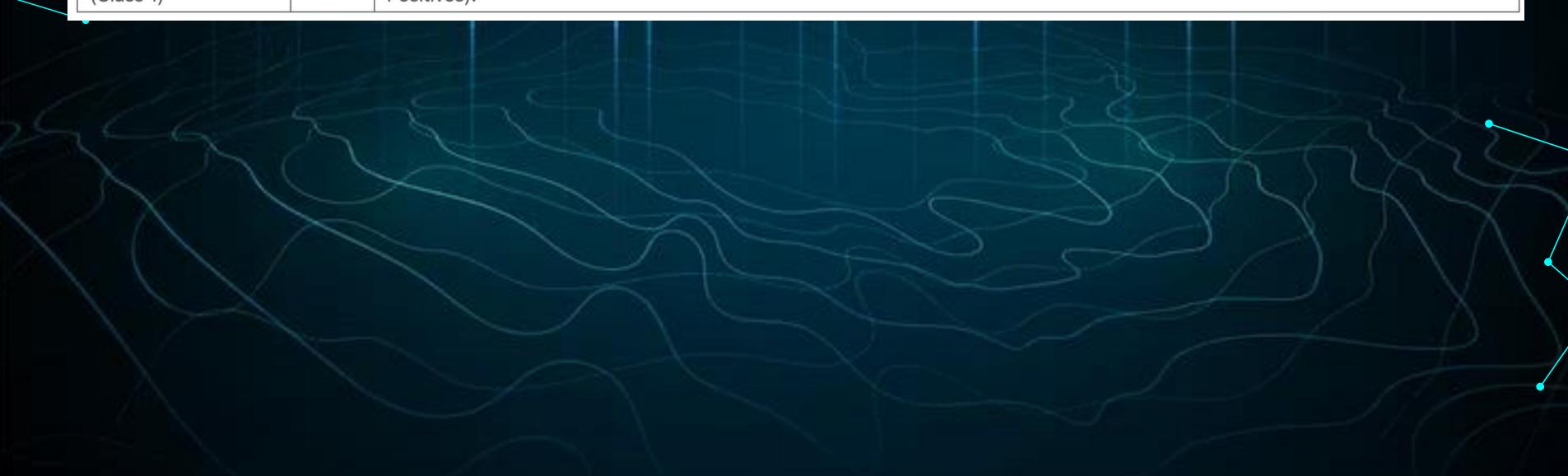
Relevant Features

```
X = df_sl[[
    'prc_full_payment',
    'cash_advance_frequency',
    'purchases_frequency',
    'tenure',
    'cash_advance_trx',
    'purchases_trx']]
```

All features' correlation coefficients: -0.05 < and < 0.05

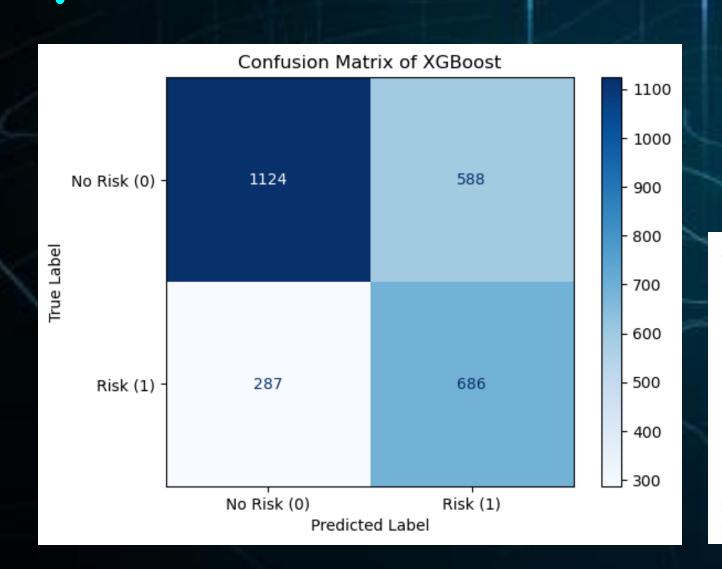
Model: XGBoost - Extreme Gradient Boosting

Metric	Value	Business Meaning
ROC AUC Score	0.7787	Strongest indicator. Shows the model has a 77.87% ability to correctly distinguish a risky customer from a randomly selected non-risky one. This is the most reliable metric.
Recall (R) for Risk (Class 1)	0.85	Very High. The model successfully found 85% of all truly risky customers. This significantly helps the bank minimize the most dangerous type of error (missing a customer about to default - False Negative).
Precision (P) for Risk (Class 1)	0.54	Weak. When the model predicts "Risk," it is correct only 54% of the time. This means 46% (718 samples) are false alarms (False Positives).



Model: XGBoost - Extreme Gradient Boosting

Metric	Value	Business Meaning
ROC AUC Score	0.7787	Strongest indicator. Shows the model has a 77.87% ability to correctly distinguish a risky customer from a randomly selected non-risky one. This is the most reliable metric.
Recall (R) for Risk (Class 1)	0.85	Very High. The model successfully found 85% of all truly risky customers. This significantly helps the bank minimize the most dangerous type of error (missing a customer about to default - False Negative).
Precision (P) for Risk (Class 1)	0.54	Weak. When the model predicts "Risk," it is correct only 54% of the time. This means 46% (718 samples) are false alarms (False Positives).



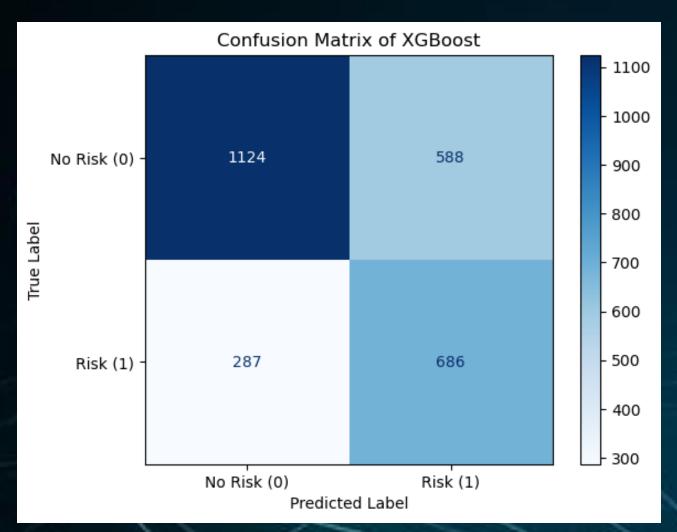
Cost/Benefit Analysis (Error Costs)

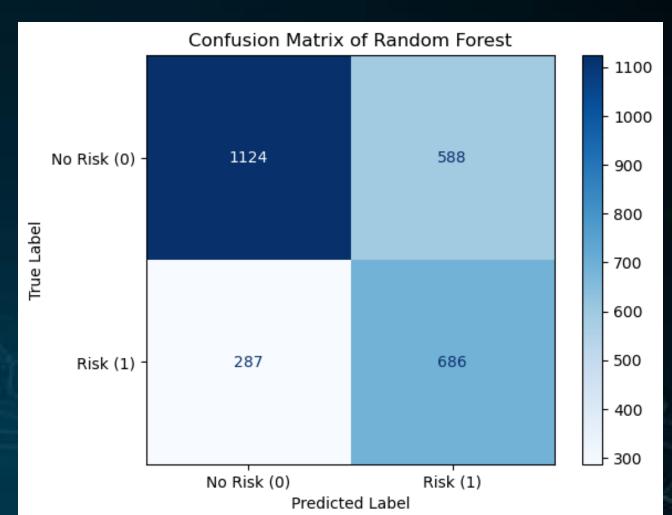
- TN (Safe Found): 994 → Success.
- TP (Risks Found): 831 → Success.
- FN (Risks Missed): 142 → Dangerous error. Thanks to scale_pos_weight, this number was successfully minimized to only 142.
- FP (False Alarms): 718 → Resource drain. This is the cost the customer service or debt collection department will incur by contacting 718 non-risky customers.

Conclusion: The model has been successfully optimized to maximize risk detection (Recall 85%)—fulfilling the primary objective of this credit risk task.

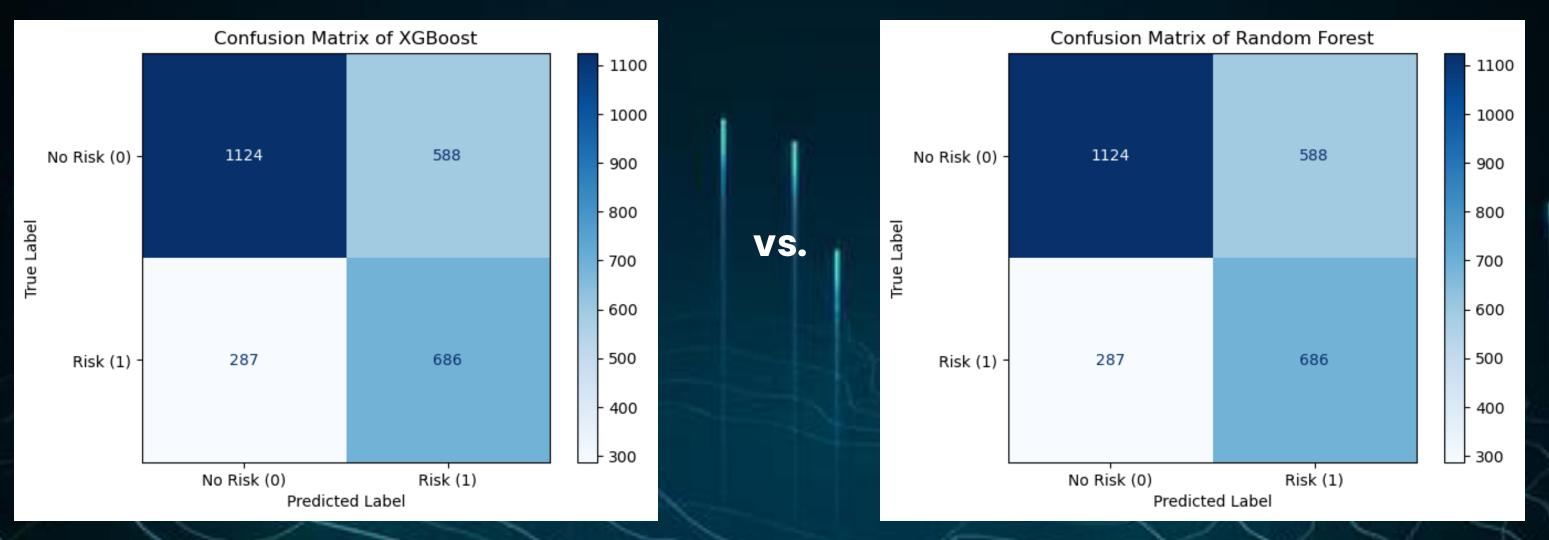
Model: RF - Random Forest

VS.



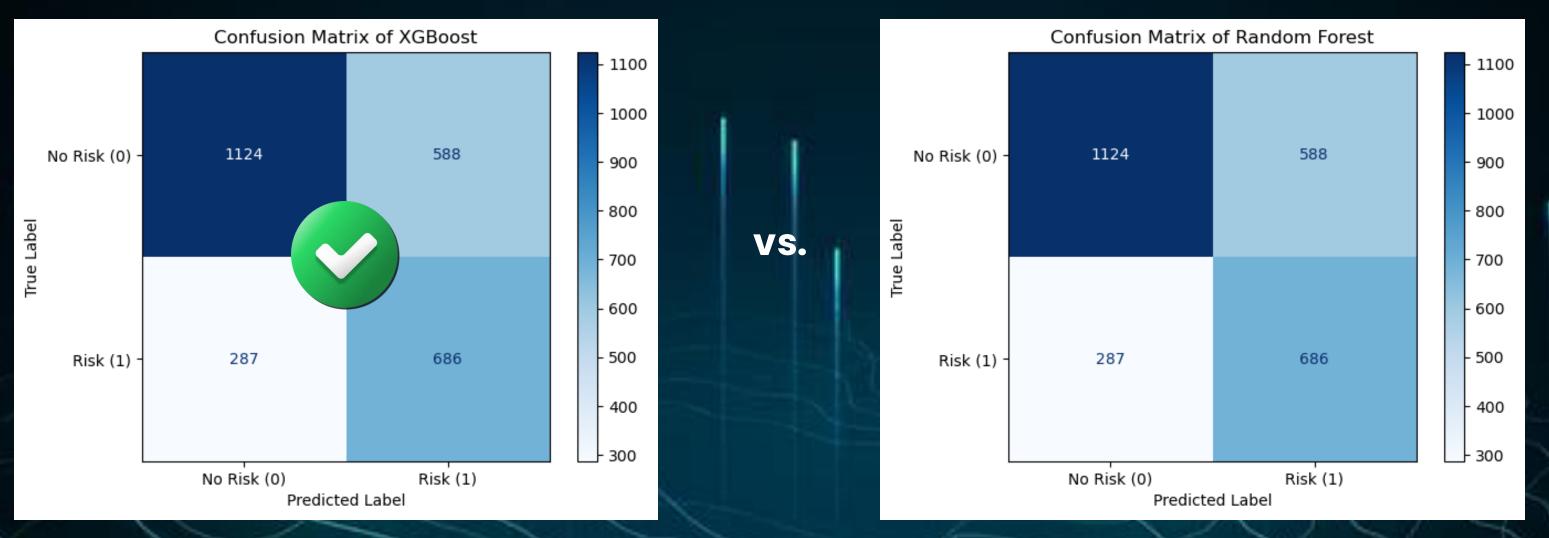


Model: RF - Random Forest



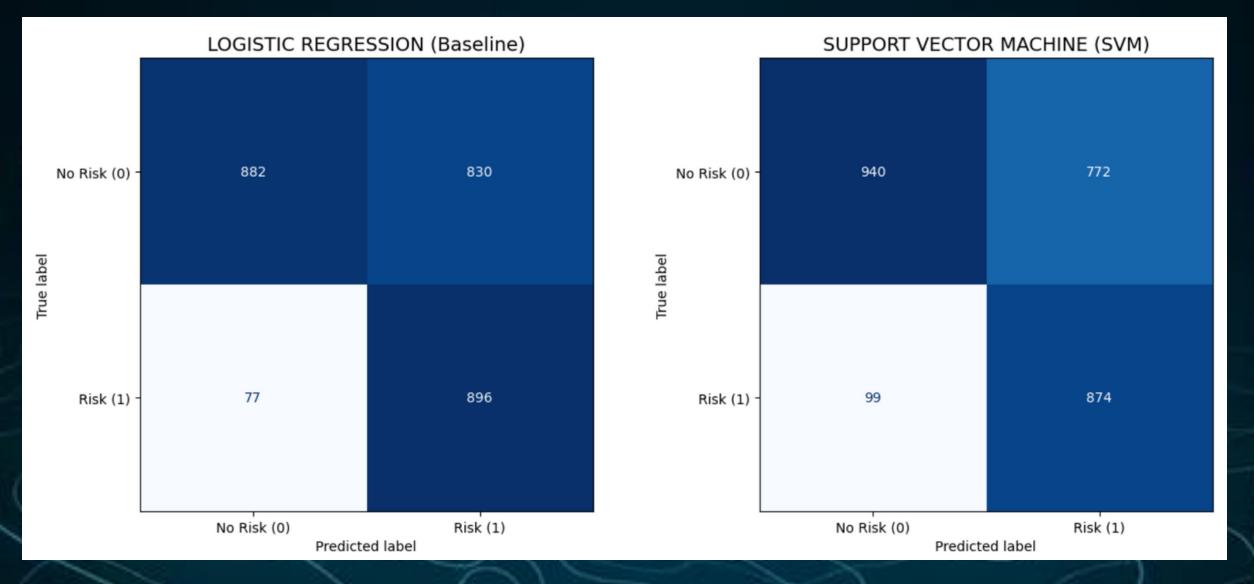
Metric (Risk Class 1)	XGBoost (Image 1)	Random Forest (Image 2)	Evaluation
True Positives (TP)	831	686	XGBoost identifies more actual risks.
False Negatives (FN)	142	287	XGBoost misses fewer risks (Most important).
Recall (Sensitivity)	85.4%	70.5%	XGBoost is significantly superior.
False Positives (FP)	718	588	XGBoost generates more false alarms.
Precision	53.6%	53.9%	Nearly equivalent.
True Negatives (TN)	994	1124	Random Forest is better at identifying safe customers.

Model: RF - Random Forest

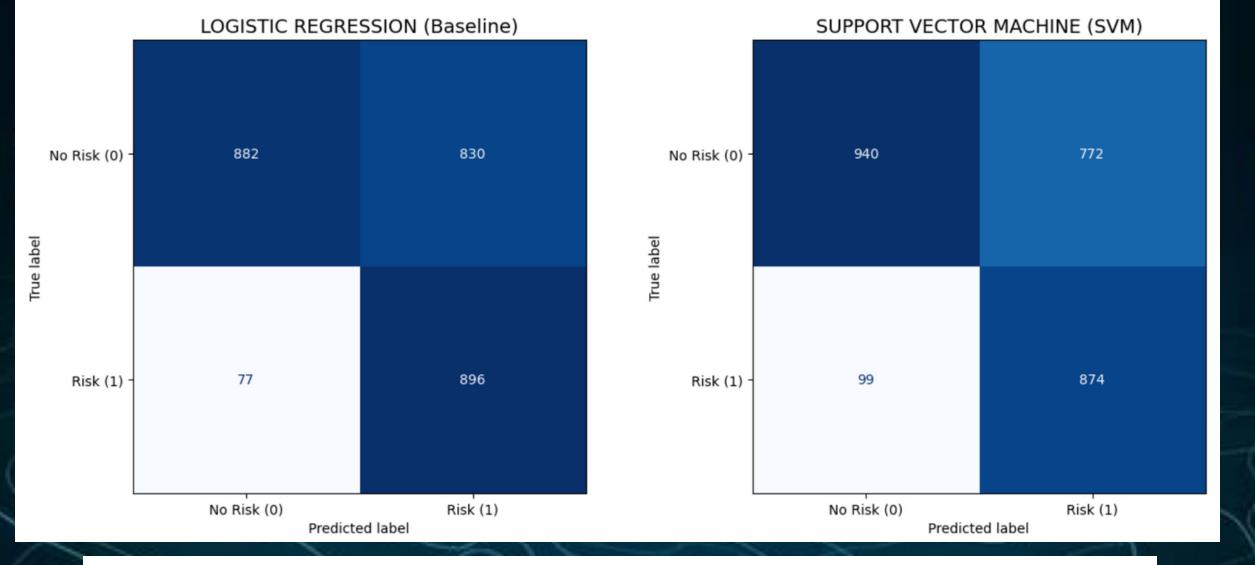


Metric (Risk Class 1)	XGBoost (Image 1)	Random Forest (Image 2)	Evaluation
True Positives (TP)	831	686	XGBoost identifies more actual risks.
False Negatives (FN)	142	287	XGBoost misses fewer risks (Most important).
Recall (Sensitivity)	85.4%	70.5%	XGBoost is significantly superior.
False Positives (FP)	718	588	XGBoost generates more false alarms.
Precision	53.6%	53.9%	Nearly equivalent.
True Negatives (TN)	994	1124	Random Forest is better at identifying safe customers.

Model: Logistic Regression and SVM - Support Vector Machine



Model: Logistic Regression and SVM - Support Vector Machine



Metric (Risk Class 1)	Logistic Regression	SVM	Analysis
True Positives (TP)	896	874	Logistic Regression finds more risks.
False Negatives (FN)	77	99	Logistic Regression misses fewer risks.
False Positives (FP)	830	772	SVM generates fewer false alarms.
True Negatives (TN)	882	940	SVM is more accurate at identifying safe customers.
Recall (Risk/Class 1)	92.1%	89.8%	Logistic Regression has higher risk detection capability.
Precision (Risk/Class 1)	51.9%	53.1%	SVM has higher prediction accuracy for risks.
Accuracy	~66.2%	~67.5%	Nearly equivalent overall accuracy.

Model: Logistic Regression and SVM - Support Vector Machine

Metric (Risk Class 1)	Logistic Regression	SVM	Analysis
True Positives (TP)	896	874	Logistic Regression finds more risks.
False Negatives (FN)	77	99	Logistic Regression misses fewer risks.
False Positives (FP)	830	772	SVM generates fewer false alarms.
True Negatives (TN)	882	940	SVM is more accurate at identifying safe customers.
Recall (Risk/Class 1)	92.1%	89.8%	Logistic Regression has higher risk detection capability.
Precision (Risk/Class 1)	51.9%	53.1%	SVM has higher prediction accuracy for risks.
Accuracy	~66.2%	~67.5%	Nearly equivalent overall accuracy.

XGBoost vs. Logisic Regression, which is the best?

Model	True Positives (TP)	False Negatives (FN - Missed Risks)	Recall (Detection Rate)	Recommendation
XGBoost	831	142	85.4%	Best Choice: Lowest FN, ideal for risk prioritization
Logistic Regression	896	77	92.1%	Highest recall, but very high FP (830), costly operations

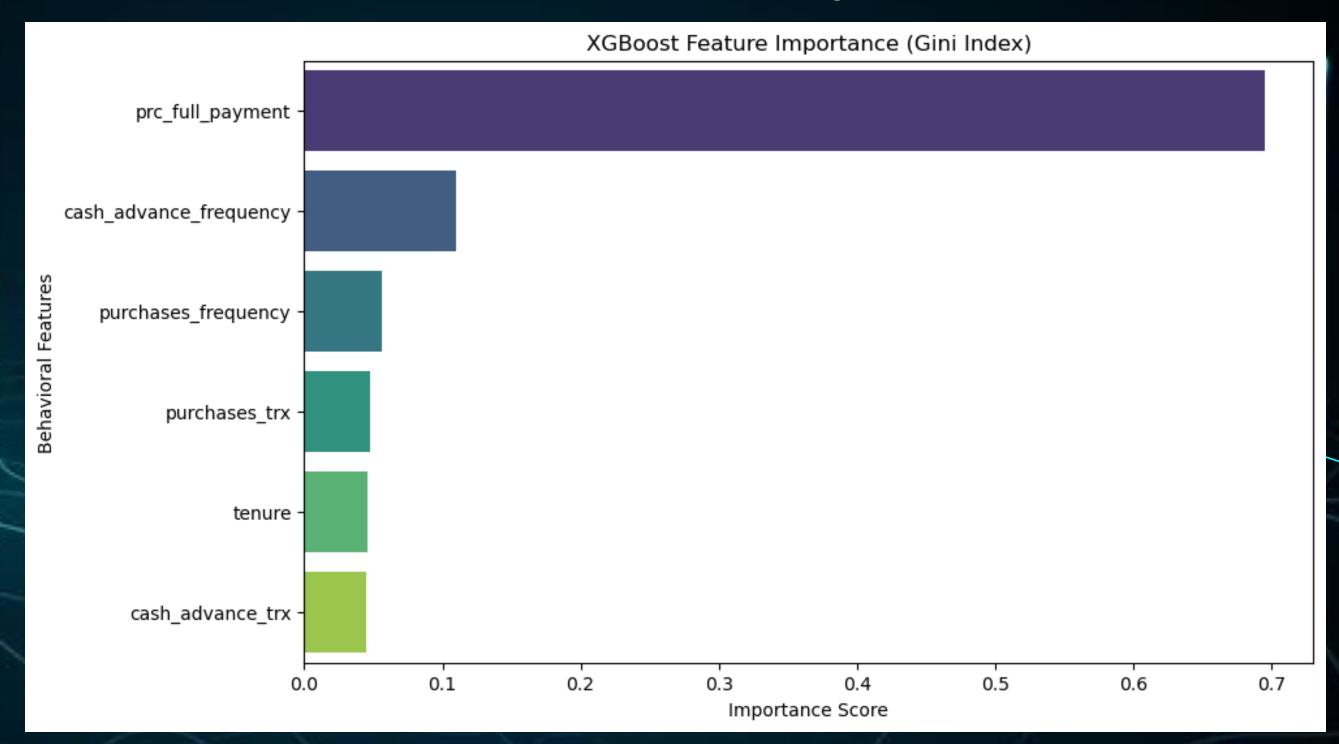
Reason for Choosing XGBoost:

- XGBoost provides the best balance for business objectives. Although Logistic Regression has a higher Recall (92.1%), XGBoost still achieves a very high Recall (85.4%) while better controlling the number of false alarms compared to Logistic Regression.
- In the context of credit risk, the cost of missing an actual risk (142 FN) is typically much higher than the cost of a false alarm. XGBoost achieves the lowest FN among the tree-based models.
- Through Feature Importance and techniques like SHAP analysis, we can interpret why XGBoost makes specific predictions. This explainability is crucial and offers a significant advantage over the more opaque "black box" nature of Logistic Regression in complex scenarios.

Model: XGBoost - Extreme Gradient Boosting

FEATURE IMPORTANCE RANKING:

	importance
prc_full_payment	0.695576
cash_advance_frequency	0.109516
purchases_frequency	0.056370
purchases_trx	0.047773
tenure	0.045892
cash_advance_trx	0.044873



Model: XGBoost - Extreme Gradient Boosting

FEATURE IMPORTANCE RANKING:	
	importance
prc_full_payment	0.695576
cash_advance_frequency	0.109516
purchases_frequency	0.056370
purchases_trx	0.047773
tenure	0.045892
cash_advance_trx	0.044873

- 1. Core Insight: Over 80% of the models predictive power is determined by two factors:
 - Payment Habit (prc_full_payment): the habit of paying in full (as opposed to making minimum or insufficient payments) is the number one factor in predicting risk. The model learned that debt repayment behavior is more important than spending behavior.
 - Risky Behavior (cash_advance_frequency): Contributes an additional 11%. Customers who frequently use cash advances (a sign of cash shortage) have significantly higher risk.
- 2. Business Implications and Policy Recommendations
 - Credit Approval/Credit Limit Increase Policy: Decisions to approve or increase credit limits should be based primarily on customers full payment history, not just their spending volume.
 - Early Warning System: Its crucial to establish an automated system to monitor two key metrics:
 - Customers showing a continuous decrease in prc_full_payment.
 - Customers with a sudden spike in cash_advance_frequency.
- Features like tenure and purchases_trx show low importance: how long a customer has been with the bank or how frequently they spend is less important than how they repay their debts.