

What a Deal!

If you downloaded this book, you are eligible for a $30
discount on Editor’s ToolKit PLUS 2014, the Editorium’s
premier Microsoft Word add-in. You can learn more
(and download the program) here:

http://www.editorium.com/ETKPlus2014.htm

To get the discount, use the following redemption code
when you place your order:

ETKP30

You can place your order here:

https://www.swreg.org/com/storefront/47578/
product/47578-26

Thanks!

Wildcard Cookbook for Microsoft Word

Wildcard Cookbook for
Microsoft Word

Jack Lyon

THE EDITORIUM

Please read this: The reader (that’s you) assumes the entire risk as to the
use of this book and the information therein. I don’t anticipate any problems,
but all computers and Microsoft Word installations are different, and I can’t
be held responsible for what might happen with yours. To avoid problems, be
sure to back up your files before trying anything in this book; then you’ll have
something to go back to if anything goes wrong. As the lawyers say, this book is
provided for informational purposes only and without a warranty of any kind,
either express or implied, including but not limited to implied warranties of
merchantability, fitness for a particular purpose, and freedom from infringement.

ISBN 978-1-4341-0398-7

Copyright © 2015 by The Editorium, LLC
All rights reserved
Printed in the United States of America

The Editorium
West Jordan, UT 84081-6132
www.editorium.com
editor@editorium.com

The names of any programs or companies mentioned in this book (including
mine) are acknowledged as trademarks of their owners. The Editorium™ is a
trademark of The Editorium, LLC.

The Editorium is not affiliated with Microsoft Corporation.

Contents

Preface vii

1 Basic Find and Replace 1

Replacing Basic Text . 1

Refining Your Search with More Options 2

2 Finding and Replacing with Word’s Built-in Codes 8

“Find What” Codes . 8

“Replace With” Codes . 10

Using Built-in Codes . 11

Replacing with “Find What Text” 12

3 Finding and Replacing with Character Codes 15

ASCII . 16

ANSI . 16

Unicode . 20

What’s That Character? 22

4 Finding and Replacing with Wildcards 24

The Basics . 24

Searching with Wildcards 29

Wildcard Ranges . 31

“Escaping” Wildcards . 33

Wildcard Grouping . 35

v

vi Contents

Using the “Find What Expression” Wildcard 37

Using Wildcards with ANSI Codes 40

5 Wildcards in the Real World 43

What’s Your Handle? . 43

More Real-Life Examples 46

Adding Periods to Lists 50

Two-Step Searching . 51

Finding "Whole Words Only" with Wildcards 54

Wildcard Searching with Tracked Changes 56

Deleting Duplicate Paragraphs 57

Considering Context . 60

Dealing with Errors . 61

Numbers by Chicago . 64

Numbers by Chicago, Simplified 67

Fixing Citations: We Can Do This the Easy Way,
or We Can Do This the Hard Way 69

Fixing Citations: The Easy Way, Not So Easy 74

Fixing Citations: From Easy to Impossible—
Three Variations on a Theme 77

Wildcard Dictionary . 84

Reference 93

Built-in Codes . 93

ANSI Character Codes 94

Wildcards . 97

Built-in Codes with Wildcards 99

Other Resources 100

Acknowledgments 101

Index 102

Preface

Okay, so this isn’t really a cookbook. Well, it’s kind of a cook-
book, because it will help you search a Word document with a
combination of wildcards1 and other codes that will give you de-
licious results. Microsoft Word’s advanced search features are ex-
tremely powerful, but they’re also virtually undocumented, and
most explanations of their use have been limited to a simple ta-
ble of various wildcards. I wrote and published a series of articles
to remedy that situation, then packaged the articles as a down-
loadable paper called “Advanced Find and Replace in Microsoft
Word.” This book incorporates the material I’ve previously writ-
ten, updates and reorganizes that material, and adds a wealth
of new material, all of which I hope you’ll find extremely useful.
Although I write and sell Microsoft Word macros for a living, the
tools I depend on most are the advanced features of Word’s find
and replace. Learning to use these tools takes time and effort,
but the payoff is huge.

Want to learn? Then don’t just read this book; rather, work
through the book, experimenting with the techniques it explains
on some junk documents that you no longer need. That will help
you understand how all of this works, and it will also help you
internalize the techniques so that you no longer need the book
(except for reference).

I hope this book will help you understand how powerful
Word’s advanced search features can be and how much time they
can save you. Using these features, you can quickly fix repetitive
problems that would take hours to correct by hand.

Enjoy!

1. Many other programs use wildcards, but they’re usually called “regular expressions”
(also known as “regex”) and are actually pretty standard from program to program.
Microsoft Word uses a modified form of these tools.

vii

Chapter 1

Basic Find and Replace

REPLACING BASIC TEXT

You probably already know how to find and replace in Mi-
crosoft Word, but if not, here are the basic steps:

1. Press CTRL + H (or click Home > Editing > Replace on Word’s
ribbon interface). This will open the “Find and Replace” dialog.

2. In the “Find what” box, enter a word you want to search for. (We’ll
use the misspelled “millenium” for an example.)

3. In the “Replace with” box, enter a word you want to replace with.
(We’ll use the correctly spelled “millennium” for an example.)

4. Click the Replace All button.

That’s it. Every occurrence of “millenium” will be replaced
with “millennium.” Simple and quick.

1

2 Basic Find and Replace

REFINING YOUR SEARCH WITH MORE OPTIONS

But wait—there’s “more”! Microsoft Word provides many ways
to refine your search. See that button at the bottom of the Re-
place dialog?

Click it. Here’s what you’ll get:

Under “Search Options,” you can specify whether to search
up, down, or through all your text:

Basic Find and Replace 3

You can also match case and find whole words only:

There are actually lots of options, all worth exploring:

Match case

Obviously, this option finds only text that matches the case (cap-
italized or lowercased) of the text in the “Find what” box. If you
enter “Hello,” Word finds “Hello” but not “hello.” If you enter
“hello,” Word finds “hello” but not “Hello.”

Find whole words only

This option finds whole words only. For example, if you search
for “sing,” Word finds “sing” but not “Singapore.” If this option
is not checked, Word finds both “sing” and “Singapore.”

Use wildcards

This option tells Word that you want to search using wildcards:

Very important. We’ll discuss it in great detail later in the book.

Sounds like (English)

This option finds words that sound like the word in the “Find
what” box. For example, if you search for “cot,” Word also finds
“caught.” If you search for “horse,” Word also finds “hoarse.” This
could be useful if you’re working on a document in which certain
words have been confused or mistyped. Basically, this feature
works on words that are homophones; it doesn’t seem to work on
words that sound almost alike, such as “horse” and “whores.” On

4 Basic Find and Replace

the other hand, while searching for “horse,” it also finds “horsey”
but not “horses,” so who knows?

Find all word forms (English)

This option finds what Microsoft calls “all” forms of the word in
the “Find what” box. For example, if you search for “sit,” Word
also finds “sat” and “sitting.” The word “all” is a little misleading,
however. The feature relies on an underlying database of word
forms that is pretty good but has some omissions. For example, if
you search for “eat,” Word finds “eat, “ate,” “eaten,” and “eating”
but not “eater.” Similary, if you search for “horse,” Word finds
“horse,” “horses,” and “horsing” but not “horseless.” It’s a use-
ful feature, mostly for finding verb forms; just don’t expect it to
actually find all forms of a word.

Match prefix

This option matches words beginning with the search string. For
example, if you put “pre” in the “Find what” box, Word finds
“prepare,” “present,” and so on. This isn’t a “smart” feature; it
searches for characters only, not word roots. For example, search-
ing for “pre” also finds “prestidigitation” and “pressure,” even
though “pre” isn’t really a prefix in those words.

Match suffix

This option matches words ending with the search string. For
example, if you put “ing” in the “Find what” box, Word finds
“singing,” “typing,” and so on. This isn’t a “smart” feature; it
searches for characters only, not word roots. For example, search-
ing for “ing” alsos find “boing,” “spring,” and “thing,” even
though “ing” isn’t really a suffix in those words.

Ignore punctuation characters

Ignores punctuation characters between words. For example,
“trees plants and flowers” finds “trees, plants, and flowers” as
well as “trees plants and flowers.” This might be useful for fixing
problems with serial commas.

Basic Find and Replace 5

Ignore white-space characters

Ignores all white space (spaces, tabs, and so on) between words.
For example, “webpage” finds “web page” as well as “webpage.”
This is the inverse of “Find whole words only” and could be use-
ful for fixing words that are sometimes spelled open and some-
times closed.

Other options

If you’re working in a language other than English, other op-
tions may be available, including Match Kashida, Match Diacrit-
ics, Match Alef Hamza, and Match Control. I know almost noth-
ing about these options, so I can’t comment on them with any
degree of expertise.

Format

One of the most important tools in Microsoft Word’s find and
replace toolbox is the ability to search for formatting—all kinds
of formatting. To do so, click the Format button:

Here’s what you’ll get:

Each option (such as “Font”) opens the usual dialog for that
feature:

6 Basic Find and Replace

I won’t go into all of the options in these dialogs as they’re
basically the same ones you’d get while formatting any text in
Word. “Font” displays font options, “Styles” displays styles, and
so on. You can select any of those options and use them as some-
thing to find or replace. For example, if your cursor is in the
“Find what” box and you select “Italic” in the “Find Font” dialog,
here’s what you’ll get:

Now Word will find text in italics but not in roman. If you also
enter a word, you’ll find that word in italic but not in roman. If
you don’t enter a word, you’ll find anything formatted as italic.

But what about the “Replace with” box? What happens if you
use formatting there?

If the “Replace with” box includes some text, whatever is
found will be replaced by that text in the format you specified.

Basic Find and Replace 7

If the “Replace with” box doesn’t include text, whatever is found
will be replaced with itself in the format you specified. For exam-
ple, if you search for the word “apples” to be replaced by “pears”
in bold, that’s exactly what you’ll get—“pears” in bold. If you
search for the word “apples” to be replaced by bold alone (with
no text), you’ll get “apples” in bold.

If, on the other hand, you search for “apples” but don’t specify
text or formatting in the “Replace with” box, “apples” will be
replaced with nothing. In other words, it will be deleted.

Many variations are possible. Here’s a basic summary:

Find Replace Result
apples pears pears
apples pears [bold] pears [bold]
apples [bold] apples [bold]
apples [nothing] [apples deleted]
[bold] [nothing] [bold text deleted]
[bold] pears [bold text becomes “pears” in bold]
[bold] pears [italic] [bold text becomes “pears” in bold italic]
[bold] [italic] [bold text becomes bold italic]

Note that you can also specify not a certain kind of formatting,
such as “not bold” or “not italic” in either find or replace. You
can also use combinations of formatting (and “not” formatting).
For example, you can search for bold but replace with italic and
not bold, which will turn any bold text into italic (but not bold
italic) text.

Chapter 2

Finding and Replacing with Word’s
Built-in Codes

This book is mainly about using wildcards in Microsoft Word. But
before we discuss that fascinating subject, you should know that
Microsoft Word includes lots of built-in find and replace codes
that are not wildcards (although lots of people call them that).

You can use Word’s built-in codes to search for things like para-
graph breaks, tabs, section breaks, column breaks, dashes, foot-
notes, endnotes, graphics, and many other things that aren’t ac-
tual text, and codes are a whole lot easier to use than wildcards.
In fact, codes should be your default tool; you should use wild-
cards only when built-in codes won’t do what you need (which
is actually fairly often, unfortunately).

Some of Word’s built-in codes can be used only in the “Find
what” box; others can be used only in the “Replace with” box.
Some of the codes can be used in both boxes.

“FIND WHAT” CODES

To see the codes that can be used in the “Find what” box, put
your cursor in the box. Now see that “Special” button at the bot-
tom of the “Find and Replace” dialog?

Go ahead, click it. You’ll get a list like this:

8

Finding and Replacing with Word’s Built-in Codes 9

Now click one of those items—let’s say “Paragraph Mark.”
You’ll get the following code in the “Find what” box (since that’s
where your cursor was located):

^p

That tells Word to find a paragraph break—that is, the end of
a paragraph.

Each item on the list will insert a different code. For example,
here’s the code for an em dash:

^+

10 Finding and Replacing with Word’s Built-in Codes

And here’s the code for an en dash:

^=

“REPLACE WITH” CODES

Now put your cursor in the “Replace with” box and click the
“Special” button again. This time, you’ll get a different list:

Again, clicking one of the list items will insert a code into the
“Replace with” box. For example, if you click “Clipboard Con-
tents” you’ll get this:

^c

That’s an extremely useful code, because ordinarily the “Re-
place with” box can hold no more than 255 characters. But using
the ^c code, you can replace with anything that is currently
copied to the Clipboard, which can hold many pages of text,
graphics, or anything else.

Finding and Replacing with Word’s Built-in Codes 11

After you’ve worked with built-in codes for a while, you’ll find
it easy to just type them in by hand. In the meantime, you can
use the “Special” lists to insert them.

You can also use combinations of codes. For example, you
could search for tabs followed by paragraph breaks (^t^p) and
replace them with paragraph breaks alone (^p).

USING BUILT-IN CODES

Codes make it possible to find and replace things you ordinar-
ily couldn’t, such as graphics, dashes, and symbols. This can be
a big help in cleaning up all kinds of editorial and typographi-
cal problems that you’d otherwise have to fix by hand. Here’s a
summary of the built-in codes and where they can be used:

Character or object Find what Replace with
Annotation Mark (comment) ^a
Any character ^?
Any digit ^#
Any letter ^$
Caret character ^^ ^^
Clipboard contents ^c
Column break ^n ^n
“Find what text” (whatever
was found during your
search)

^&

Em dash ^+ ^+
En dash ^= ^=
Endnote mark ^e
Field ^d
Footnote mark ^f
Graphic ^g
Line break ^l ^l
Manual page break ^m ^m
Nonbreaking hyphen ^~ ^~
Nonbreaking space ^s ^s
Optional hyphen ^- ^-
Paragraph mark ^p ^p
Section break ^b
Tab character ^t ^t
White space ^w

12 Finding and Replacing with Word’s Built-in Codes

REPLACING WITH “FIND WHAT TEXT”

One of the most important of Word’s built-in codes is what
Microsoft calls the “Find What Text” code. The code looks like
this—

^&

—and it stands for whatever was found during your search. That
sounds rather confusing, but let’s try an example for clarification.

Let’s say you need to add the HTML italic tags <I> and </I>
around anything formatted with italic. (If you don’t understand
HTML, don’t worry. You’ll soon see the point of this example.)
You might think you’d need a macro to add the tags, but you
don’t. You can easily do it like this:

1. With your cursor in the “Find what” box, turn on italic formatting
(CTRL+I) so that the word “Italic” is displayed below the box.
Make sure the box itself is empty.

2. In the “Replace with” box, enter “<I>^&</I>” (if you want, you
can also set this box to “Not Italic” by pressing CTRL+I a couple
of times).

3. Click the “Replace All” button. Any italicized text will be sur-
rounded by the HTML italic tags.

The ^& code in the “Replace with” box represents the text you
specified in the “Find what” box. In this case, that’s any text with
italic formatting. What you’re saying is, “Find any text in italic
and replace it with itself surrounded by HTML italic codes.” As a
specific example, let’s take the following line,

This is a test to see what will happen.

When you use the find and replace procedure above, you’ll get
the following result:

This is a test to <I>see</I> what will happen.

You can use the same principle to manipulate text in a variety
of ways:

Finding and Replacing with Word’s Built-in Codes 13

• Put quotation marks around the titles of magazine articles that an
author has italicized.

• Insert a bullet in front of every paragraph formatted with Heading
3 style.

• Insert “Chapter” in front of every number formatted with Heading
1 style.

And so on. Any time you need to add something to unspecified
text that’s formatted in a specific way, try using “Find What Text.”

Here’s another example—using the "Find What Text" code to
change the format of note numbers. I’m going to use footnotes
as an example, but you can do the same thing with endnotes.

When you create footnotes in Microsoft Word, the footnote
numbers are formatted in superscript, like this:

1 This is the text of note 1.
2 This is the text of note 2.

And so on. But sometimes you might want your footnote num-
bers to have regular formatting and be followed by a period, like
this:

1. This is the text of note 1.
2. This is the text of note 2.

Microsoft Word has no numbering option that will do this. Nev-
ertheless, there is a way to do it, using “Find What Text”:

1. Open a document containing footnotes (be sure to keep a backup
copy of the document, just in case).

2. Make sure the document is in Draft view (View > Draft).

3. Open the footnote pane (References > Show Notes).

4. Make sure your cursor is at the top of the footnote pane.

5. Open the “Find and Replace” dialog (Home > Replace).

6. In the “Find what” box, enter “^f” (don’t include the quotation
marks). ^f is the code that represents a footnote number.

14 Finding and Replacing with Word’s Built-in Codes

7. In the “Replace with” box, enter “^&.” (don’t include the quota-
tion marks). Be sure to include the period after the ampersand.
The ^& code itself represents any text that was found, or in other
words, the "Find What Text."

8. With your cursor in the “Replace with” box, click the “Format”
button. (You may need to click the “More” button first.)

9. Click “Font.”

10. In the “Find Font” dialog, clear the “Superscript” checkbox so that
the replacement text won’t be formatted in superscript.

11. Click the “OK” button to close the dialog.

12. In the “Find and Replace” dialog, click the “Replace All” button.

Your footnotes will now be formatted like this:

1. This is the text of note 1.
2. This is the text of note 2.

Pretty neat! Remember, however, that if you now add another
footnote, its number will be formatted in the superscript default,
and you’ll have to fix it by hand. To do so:

1. Select the number.

2. Press CTRL+SPACE to remove the superscript format.

3. Type a period after the number.

WARNING: Be careful not to delete a note number or type a note
number by hand. Microsoft Word uses a special code to represent
a note number, and if you fool around with that code, you risk
corrupting your file. You can, however, delete or move a note
reference number that appears in the body of your document,
like this,3and Microsoft Word will automatically renumber your
notes, leaving their new formatting intact.

I ordinarily advise people not to mess around with automatic
note numbers, because it’s fairly easy to corrupt a document by
doing so. If you know what you’re doing, however, you can at
least change the formatting of the note numbers if you really
need to. Now you know how!

Chapter 3

Finding and Replacing with
Character Codes

In addition to using Word’s built-in codes, you can find and re-
place using numeric character codes. But before getting into that,
we need to look at some history of the character sets available
on computers.

In the beginning was ASCII (American Standard Code for In-
formation Interchange), and ASCII was limited to 128 characters
(numbered 0 to 127). To quote Wikipedia, “The first edition of
the standard was published during 1963. . . . The characters
encoded are numbers 0 to 9, lowercase letters a to z, uppercase
letters A to Z, basic punctuation symbols, control codes that orig-
inated with Teletype machines, and a space.”

As you can imagine, 128 characters wasn’t nearly enough;
ASCII didn’t even include diacritics. So using character codes
from the American National Standards Institute (ANSI), Mi-
crosoft extended the number of characters available in Word to
256 (numbered 0 to 255). That made it possible to access what
they called “foreign-language” and other special characters by
using “code pages” with different fonts. If you’ve clicked Insert >
Symbol > More Symbols and then changed the font on the drop-
down list in the Symbol dialog, you’ve seen how this works: the
same character “position” (or number) often displays a different
character in different fonts.

But what if you want to use special characters—any special
characters—in the same font as your regular text? That’s what
Unicode is all about. As the Unicode website explains, “Unicode
provides a unique number for every character, no matter what

15

16 Finding and Replacing with Character Codes

the platform, no matter what the program, no matter what the
language.” How many characters? The latest version has a reper-
toire of more than 120,000 characters covering 129 modern and
historic scripts, as well as multiple symbol sets, including Greek
and Gothic, Klingon(!) and Korean—pretty much anything you
might need.

In Microsoft Word, you can find and replace using any of these
three kinds of numeric character codes:

• ASCII

• ANSI

• Unicode

ASCII

I’m not going to say much about using ASCII codes, as they’re
the same as the first 128 of the ANSI codes, just not preceded by
a zero. For example, here’s the ANSI code for a carriage return:

^013

And here’s the ASCII code for a carriage return:

^13

It’s easier to type the ASCII code (three keystrokes rather than
four), but in my opinion it’s better to get into the habit of using
ANSI codes (all of which begin with a zero) just so you don’t
have to think about whether to use the zero or not. It’s up to you,
of course; there’s nothing to keep you from using both.

ANSI

To use ANSI codes for finding or replacing special characters,
simply type them (preceded by a caret and a zero) into the “Find
what” or “Replace with” boxes. For example, if you wanted to
find a u with an umlaut, you’d enter the following code in the
“Find what” box on a PC:

Finding and Replacing with Character Codes 17

^0252

On a Macintosh, you’d enter this:

^0159

That’s right—the codes higher than 127 don’t always represent
the same character from platform to platform.

Here’s a list of the ANSI codes available in Microsoft Word on
both Macintosh and PC (also included in the reference section
at the end of the book). The list doesn’t include the codes for
such ordinary characters as letters of the alphabet, since you can
search for those by using the characters themselves; no code is
needed. Also, be aware that some fonts assign different charac-
ters to the numeric codes. The list below should be accurate for
Times New Roman on a PC and Times on a Macintosh.

Character Name Macintosh PC
footnote reference 2 2
tab 9 9
line break 11 11
page/section break 12 12
paragraph break 13 13
column break 14 14

- nonbreaking hyphen 30 30
– optional hyphen 31 31

space 32 32
‚ comma 226 130
ƒ folio 196 131
„ double comma 227 132
. . . ellipses 201 133
† dagger 160 134
‡ double dagger 224 135
ˆ caret 246 136
‰ per thousand 228 137
Š capital S hacek 138
‹ open angle bracket 220 139
Œ capital oe diphthong 206 140
‘ open single quote 212 145
‘ close single quote 213 146
“ open double quote 210 147

18 Finding and Replacing with Character Codes

Character Name Macintosh PC
“ close double quote 211 148
• bullet 165 149
– en dash 208 150
— em dash 209 151
˜ tilde 247 152
™ trademark 170 153
š lowercase s hacek 154
› close angle bracket 221 155
œ lowercase oe diphthong 207 156
Ÿ capital Y umlaut 217 159

non-breaking space 160 160
¡ inverted exclamation 193 161
¢ cent 162 162
£ pound 163 163

cell (in a table) 219 164
¥ yen 180 165
¦ pipe 124 166
§ section 164 167
¨ umlaut 172 168
© copyright 169 169
ª ordinal, feminine 187 170
« left chevrons 199 171
¬ not 194 172
- soft hyphen 248 173
® registered 168 174
¯ macron 248 175
° degree 161 176
± plus or minus 177 177
² superscript 2 50 178
³ superscript 3 51 179
´ acute accent 171 180
μ micro 181 181
¶ pilcrow 166 182
· middle dot 225 183
¸ cedilla 252 184
¹ superscript 1 49 185
º ordinal, masculine 188 186
» right chevrons 200 187
¼ one-fourth 188

Finding and Replacing with Character Codes 19

Character Name Macintosh PC
½ one-half 189 189
¾ three-fourths 190 190
¿ inverted question 192 191
À capital A, grave 203 192
Á capital A, acute 231 193
Â capital A, circumflex 229 194
Ã capital A, tilde 204 195
Ä capital A, umlaut 128 196
Å capital A, angstrom 129 197
Æ capital AE, diphthong 174 198
Ç capital C, cedilla 130 199
È capital E, grave 233 200
É capital E, acute 131 201
Ê capital E, circumflex 230 202
Ë capital E, umlaut 232 203
Ì capital I, grave 237 204
Í capital I, acute 234 205
Î capital I, circumflex 235 206
Ï capital I, umlaut 236 207
Ð capital eth 208
Ñ capital N, tilde 132 209
Ò capital O, grave 241 210
Ó capital O, acute 238 211
Ô capital O, circumflex 239 212
Õ capital O, tilde 205 213
Ö capital O, umlaut 133 214
× multiply 120 215
Ø capital O, slash 175 216
Ù capital U, grave 244 217
Ú capital U, acute 242 218
Û capital U, circumflex 243 219
Ü capital U, umlaut 134 220
Ý capital Y, acute 89 221
Þ capital thorn 222
ß sharp s 167 223
à lowercase a, grave 136 224
á lowercase a, acute 135 225

20 Finding and Replacing with Character Codes

Character Name Macintosh PC
â lowercase a, circumflex 137 226
ã lowercase a, tilde 139 227
ä lowercase a, umlaut 138 228
å lowercase a, angstrom 140 229
æ lowercase ae,

diphthong
190 230

ç lowercase c, cedilla 141 231
è lowercase e, grave 143 232
é lowercase e, acute 142 233
ê lowercase e, circumflex 144 234
ë lowercase e, umlaut 145 235
ì lowercase i, grave 147 236
í lowercase i, acute 146 237
î lowercase i, circumflex 148 238
ï lowercase i, umlaut 149 239
ð lowercase eth 240
ñ lowercase n, tilde 150 241
ò lowercase o, grave 152 242
ó lowercase o, acute 151 243
ô lowercase o, circumflex 153 244
õ lowercase o, tilde 155 245
ö lowercase o, umlaut 154 246
÷ divide 214 247
ø lowercase o, slash 191 248
ù lowercase u, grave 157 249
ú lowercase u, acute 156 250
û lowercase u, circumflex 158 251
ü lowercase u, umlaut 159 252
ý lowercase y, acute 121 253
þ lowercase thorn 254
ÿ lowercase y, umlaut 216 255

UNICODE

Unicode characters include all kinds of things—fractions,
Greek, Hebrew, and much, much more. How to search for these
isn’t readily apparent, but there are actually two different meth-
ods that will work.

Finding and Replacing with Character Codes 21

Method 1: Unicode number

Searching with Unicode numbers is similar to using ANSI codes,
but you use a “u” instead of a “0” in front of the number, and of
course you need to know the Unicode decimal (not HEX) number
for the character. There are far too many Unicode characters to
list here, but you can look them up online:

https://en.wikipedia.org/wiki/List_of_Unicode_characters

For example, to find a small Greek alpha in Microsoft Word,
you’d search for this:

^u945

Method 2: Copy and paste

If you can see an example of the Unicode character in your doc-
ument (or insert one), you can actually copy the character and
then paste it into the “Find what” box. Then just search as usual.

Replacing with Unicode characters

Replacing text with Unicode characters can be a little trickier
than finding them, as Word won’t let you use a numeric code
(like ^u945) in the “Replace with” box. I’ve usually had success,
however, in pasting the character into the box. But if that doesn’t
work, you may be able to follow this procedure instead:

1. Find an example of the character in your document.

2. Copy the character.

3. In the “Find what” box, enter the text you want to find.

4. In the “Replace with” box, enter ^c to tell Word you want to
replace with the contents of the Clipboard—in other words, with
the Unicode character you copied.

5. Click the “Replace All” button.

22 Finding and Replacing with Character Codes

WHAT’S THAT CHARACTER?

But what if you’re trying to search for some obscure charac-
ter in an unusual font and don’t know its number in ANSI or
Unicode? Here’s the scenario: You open a giant document from
a client and start looking through it. But what’s this? The same
odd character appears at the beginning of every paragraph. Must
be some kind of file translation error. Odder still, Microsoft Word
won’t let you paste the character into its “Find and Replace” di-
alog, so how are you going to get rid of them all? By hand?
Horrors!

If you knew the character’s numeric code, you could search for
it. But this character isn’t on the usual list. How can you find out
its numeric code? With a simple macro:

Sub NextCharacter()
MsgBox CStr(AscW(Selection))
End Sub

Here’s how to put this macro into Microsoft Word so it will be
available when you need it:

1. Type the text of the macro (with complete accuracy) into a docu-
ment.

2. Copy the text of the macro, starting with the first “Sub” and ending
with the last “Sub.”

3. Click the “View” tab on Microsoft Word’s ribbon.

4. Click the “Macros” button.

5. Type the name of the macro (NextCharacter) into the “Macro
name” box.

6. Click the “Create” button.

7. Delete the “Sub [macro name]” and “End Sub” lines that Word
created in the macro window. The macro window should now
be completely empty (unless you already have other macros in
there).

8. Paste the macro text at the current insertion point.

9. Click “File,” then “Close and Return to Microsoft Word.”

Finding and Replacing with Character Codes 23

To actually use the macro:

1. Place your cursor directly in front of the character you want to
identify.

2. Click the “View” tab on Microsoft Word’s ribbon.

3. Click the “Macros” button.

4. Click “NextCharacter.”

5. Click the “Run” button.

A message box will appear with the numeric code for the charac-
ter. To dismiss the message box, click OK.

Please note that a numeric code from 0 to 255 is the same for
both ANSI and Unicode. Anything else is a Unicode number.

You may want to assign a keyboard shortcut to the NextChar-
acter macro so you can run it with the press of a key. Here’s how:

1. Click “File > Options.” Click the “Customize Ribbon” button (on
the left).

2. Under “Choose commands from,” select “Macros.”

3. Select the NextCharacter macro.

4. At the bottom of the dialog, you’ll see “Keyboard shortcuts: Cus-
tomize.”

5. Click the “Customize” button.

6. Put your cursor in the box labeled “Press new shortcut key” and,
well, press a new shortcut key (CTRL+SHIFT+N might work well
for this macro).

7. Click the “Assign” button (on the lower left).

8. Click the “Close” button (on the lower right).

Now whenever you press the shortcut key you’ve assigned
(CTRL+SHIFT+N), the macro will run, and you’ll get a message
box that gives you the numeric code for the character after your
cursor.

Chapter 4

Finding and Replacing with
Wildcards

THE BASICS

When I was in the fifth grade in wintry Idaho, rather than
venturing out into the cold, some fellow students and I often
spent recess playing poker. (Did our teacher know about this? I
can’t remember.) Being extremely sophisticated players, we often
designated jokers and one-eyed jacks as wildcards—that is, they
could represent any card in the deck. With the help of these wild-
cards, we had plenty of royal flushes, hands with five aces, and
so on. Now that was poker! Here’s an example:

A pair of twos—not a very good hand.
But now let’s suppose the joker is wild—it can represent some-

thing else: let’s say another two.

24

Finding and Replacing with Wildcards 25

That means we have three of a kind!
Now suppose the one-eyed jack is also wild, so we’ll have it

represent a two as well:

That gives us four of a kind, which could very well be a win-
ning hand! (Yes, we’re talking about money, because time is
money, and using wildcards can save you a lot of time.)

The point is, a wildcard represents something else. For exam-
ple, the simplest wildcard in Word is the question mark (?),
which represents any single character. If you want to see how
it works, try this:

26 Finding and Replacing with Wildcards

1. In the “Find what” box, enter a question mark (?).

2. Put a checkmark in the “Use wildcards” box. That tells Microsoft
Word that you’re going to search with a wildcard. If you didn’t
check the box, Word would assume you were trying to find a
question mark.

Now click the “Find” button. Microsoft Word will find the
first character after your cursor position. Click the “Find” button
again. Microsoft Word will find the next character. And so on.

That doesn’t seem very useful, but let’s suppose you’re edit-
ing a document that was scanned from a magazine article and
is riddled with typos. You notice that the word “but” shows up
in various ways, including “bat” and “bet.” Let’s say that this is
a technical article with no references to baseball, winged mam-
mals, or games of chance, so you decide to use the ? wildcard
to find “bat” and “bet” and replace them in a single pass. Here’s
the procedure:

1. Enter “b?t” in the “Find what” box.

2. Enter “but” in the “Replace with” box.

3. Put a checkmark in the “Use wildcards” box.

4. Click the “Replace All” button.

Both “bat” and “bet” will be replaced with “but.” The problem
is, so will “bit.” And, unfortunately, since you can’t specify “Find
Whole Words Only” when the “Use wildcards” box is checked,
Microsoft Word will replace “better” with “butter,” “combat” with
“combut,” and who knows what else. So, instead of clicking the
“Replace All” button, you should click the “Replace” button for
each individual item as needed.

Now you begin to see the power—and the danger—of using
wildcards. Like cut-throat poker, they are not for the faint of
heart. But if you know what you’re doing, they can be very useful.
Unfortunately, they won’t help much in the “Replace with” box.
In fact (with one exception that we’ll discuss later), you can’t use

Finding and Replacing with Wildcards 27

them there at all. Why? Because Word has no way of knowing
what you want them to represent.

Let’s say you want to find “but” and replace it with either “bet”
or “bat,” so you put “b?t” in the “Replace with” box and click the
“Replace All” button. Word doesn’t know whether you want to
replace “but” with “bet” or “bat,” so it just replaces it with the
actual text “b?t.” So, basically, the only thing you can use in the
“Replace with” box is actual text or certain built-in codes. You
can find out what wildcards are available in the “Find what” box
by clicking our old friend, the “Special” button, when the “Use
wildcards” option is selected:

Here’s what you’ll get:

28 Finding and Replacing with Wildcards

Items like “Em Dash” and “En Dash” are self-evident and will
give you one of Word’s built-in codes (discussed earlier). But
the first nine items on that list are wildcards, pure and simple.
Here’s what they find:

? Finds any single character: “c?t” finds “cat,”
“cut,” and “cot.”

* Finds any string of characters: “b*d” finds “be-
witched,” “bothered,” and “bewildered.”

[] Finds one of the specified characters: “b[ai]t”
finds “bat” and “bit” but not “bet.”

[-] Finds any single character in the specified
range (which must be in ascending order):
“[l-r]ight” finds “light,” “might,” “night,” and
“right” (and “oight,” “pight,” and “qight,” if
they exist).

[!] Finds any single character except those spec-
ified: “m[!u]st” finds “mist” and “most” but
not “must.” “t[!ou]ck” finds “tack” and “tick”
but not “tock” or “tuck.”

[!x-z] Finds any single character except those in the
specified range: “t[!a-m]ck” finds “tock” and
“tuck” but not “tack” or “tick.”

{n} Finds exactly n occurrences of the previous
character or expression: “re{2}d” finds “reed”
but not “red.”

{n,} Finds at least n occurrences of the previous
character or expression: “re{1,}d” finds “red”
and “reed.”

{n,m} Finds from n to m occurrences of the previous
character or expression: “10{1,3}” finds “10,”
“100,” and “1000.”

@ Finds one or more of the previous character
or expression before something else: “me@t”
finds both “met” and “meet”; “me@” (with-
out the “t”) finds only “me” because nothing
comes after it.

< Finds the beginning of a word: “<inter” finds
“interest” and “interrupt” but not “splinter.”

> Finds the end of a word: “in>“ finds “in” and
“main” but not “inspiring.”

Finding and Replacing with Wildcards 29

Don’t just skip over that list. Please study it carefully and try
to understand what it’s saying. You’ll need that knowledge as we
look at some examples of wildcards in use, which should also
help clarify things.

SEARCHING WITH WILDCARDS

Earlier we used the “?” wildcard to find every three-letter com-
bination starting with b and ending with t—“bet,” “but,” “bit,”
“bat,” and so on—by searching for “b?t” with “Use wildcards”
turned on.

Now let’s say we wanted to find the same characters but add
others as well. For example, we might want to find every three-
letter combination starting with b and ending with d—“bed,”
“bud,” “bid,” “bad,” and so on—in addition to the combinations
ending in t. Can we really do that? Sure! We’ll start by entering
the letter b into the “Find what” box, telling Microsoft Word to
find that letter.

Next, we’ll enter the ? wildcard, which tells Microsoft Word to
find any single character.

Finally, we’ll enter a new wildcard:

[td]

Microsoft Word will find any one of the characters specified in
the brackets (in this case, either t or d). Characters specified in
this way are called a “range.”

Altogether, the string of characters looks like this:

b?[td]

That particular combination tells Microsoft Word to find the
letter b followed by any other single character followed by t or d.

How can something like this help you? Suppose you’re edit-
ing a manuscript in which the author has misspelled a name
in nearly every way possible. You could comb through the
manuscript over and over, hoping to catch all the variations. Or,
you could be sure to catch them all by searching with wildcards.
For example, let’s say your manuscript is a book about India and
the name in question is Gandhi. Your author has misspelled it as

30 Finding and Replacing with Wildcards

“Ghandi,” “Gahndi,” and “Ganhdi.” (Not possible? Hah!) You can
find every last one of them with the following string:

G[andh][andh][andh][andh]i

Then, if you’ve put the correct spelling, “Gandhi,” in the “Re-
place with” box, you can find and replace each wrong spelling
with the right one in a single pass, which is much more efficient
than finding and replacing each variation separately.

You may be wondering why you couldn’t just use the * wild-
card to represent the whole string of letters, like this:

G*i

You could. But the * wildcard represents any string of
characters—including spaces and carriage returns. It’s not lim-
ited to characters within a word (and neither are other wild-
cards). That means, in addition to finding the misspelled names,
it will find the first 14 characters of the following phrase: “Go
to the officer’s hall.” So be careful, especially if you’re planning
to use “Replace All” rather than finding and replacing one item
at a time.

There is a way to simplify the wildcard combination, however.
Consider this string:

G[andh]{4}i

It’s functionally the same as this:

G[andh][andh][andh][andh]i.

The {4} tells Word to find exactly four occurrences of the pre-
vious “expression,” which is [andh].

But now a complication: Suppose that our slapdash author
has also spelled Gandhi’s name as “Gandi.” Uh-oh. Our original
string won’t catch that, because this new misspelling is one char-
acter shorter than our string specifies. But consider this:

G[andh]{3,4}i

Finding and Replacing with Wildcards 31

The {3,4} tells Word to find from 3 to 4 occurrences of the
previous expression, so this string will catch all of our misspelled
variations so far.

What if we want to allow for more or fewer characters, being
particularly unsure of our author? We can use this string:

G[andh]@i

The @ wildcard tells Microsoft Word to find one or more oc-
currences of the previous expression (if there are any) until it
reaches an i. That ought to cover nearly anything our author
throws at us. If we want to get a little more specific, we can use
{3,}, which tells Word to look for at least three occurrences of
the previous expression.

Here’s a tip: What would happen if we put a lowercase g rather
than a capital G at the beginning of our string? Word wouldn’t
find the misspelled names. Why? Because with “Use wildcards”
turned on, Word automatically matches case—a useful thing to
know.

WILDCARD RANGES

The example above introduced wildcard ranges, which are ac-
tually fairly simple. You just use the [-] wildcard to tell Microsoft
Word what to find. Let’s continue with our example:

b?[td]

As you probably recall, this tells Word to find the letter b fol-
lowed by any single character followed by either t or d. In other
words, it will find “bet,” “but,” “bit,” “bat,” “bed,” “bud,” “bid,”
“bad,” and so on.

But what if we wanted to find “bat,” “bad,” “bet,” and “bed”
but not “bit,” “bid,” “bud,” and “but”? We could use this wildcard
combination in the “Find what” box:

b[a-e][td]

This tells Word to find the letter b followed by any letter from a
to e (in other words, a, b, c, d, or e) followed by t or d. (The range

32 Finding and Replacing with Wildcards

must be in ascending order—in other words, from a “lower” let-
ter [such as a] to a “higher” letter [such as z].)

Here’s another way to approach this:

b[!f-z][td]

Notice the exclamation mark at the front of the “range” wild-
card. The exclamation mark tells Word to find every character
except those specified—in this case, the letters f through z. This
wildcard combination, too, will find “bat,” “bad,” “bet,” and “bed”
but not “bit,” “bid,” “bud,” and “but.”

Here’s a range that I use all the time:

[0-9]

That little beauty finds any occurrence of a digit. What’s that
good for? Let’s say you’re editing a document with lots of num-
bered lists, like this:

1. Lorem ipsum dolor sit amet.
2 Ut wisi enim ad minim veniam.
3. Duis autem vel eum iriure dolor.

Did you notice that the number 2 has no period? Good! You
must have “the eye.” But if you have several long lists, you might
want to let Word find these problem numbers for you. To do so,
try this wildcard string:

^013[0-9]@[!.]

Pretty cryptic. But if you’ve been following along, you can
probably figure this out:

^013 is the numeric code for a carriage return.
[0–9] represents any digit (yes, it’s a range—of numbers, in this

case).
@ tells Word to find one or more occurrences of the previous

expression, if there are any (in this case, any digit). This is necessary
in case you have lists with two-digit (or longer) numbers.

[!.] tells Word to find any character except a period (also a range).

Finding and Replacing with Wildcards 33

Piece of cake! Here are three other wildcard ranges you might
find useful:

[a-z] represents any occurrence of a lowercase letter.
[A-Z] represents any occurrence of an uppercase letter.
[A-z] represents any occurrence of any letter.

Remember, too, that you can use the [] wildcard (without
a hyphen) to specify a whole group of arbitrary characters. For
example, this wildcard will find various kinds of punctuation:

[.,;:\?\!]

Don’t be afraid to try all of these wildcard combinations and
ranges for yourself (on some junk text, of course). As you exper-
iment, you’ll better understand what works and what doesn’t.
Then, when the need to use wildcards arises (which it will),
you’ll be ready.

Using a range to find Unicode characters

If you need to find any (unspecified) Unicode character in a doc-
ument, you can use this not range:

[!^000-^255]

127 is the upper limit on ASCII characters. 255 is the upper
limit on ANSI characters. This string excludes them both, so any-
thing else it finds must be Unicode.

“ESCAPING” WILDCARDS

You may be wondering about the backslash (\) in front of the
question and exclamation marks in our previous example:

[.,;:\?\!]

The backslash tells Word to treat the following character as a
character and not as a wildcard. (Remember, ? is the wildcard
for a single character, and ! is the wildcard for “except.”) Us-
ing a backslash in this way is called “escaping” the character it
precedes.

34 Finding and Replacing with Wildcards

Here’s a specific example. Let’s say we want to find any ques-
tion that appears in our document:

Where have all the flowers gone?

You might think the following wildcard string would do the
job, but it doesn’t:

[A-z ?]{1,}

Why? Because Word sees ? as a wildcard representing “any
character.” To make Word see it as a character instead (an actual
question mark), you have to escape it with a backslash, like this:

\?

So this string does work to find any question:

[A-z \?]{1,}

There are actually quite a few characters that have to be es-
caped if you want to use them as characters rather than wild-
cards. Here they are, along with their meaning as wildcards:

? any character
* zero or more characters
[begins a range
] ends a range
{ begins a specified number
} ends a specified number
(begins an expression
) ends an expression
< begins a word
> ends a word
^ introduces a numeric character code
\ the escape character!

Finding and Replacing with Wildcards 35

WILDCARD GROUPING

Wildcard grouping is simply a way of telling Word that you
want certain wildcards to be used together as a unit. Continu-
ing with our example from above, let’s say that you’re editing a
document with lots of numbered lists, like this:

1. Lorem ipsum dolor sit amet.
2. Ut wisi enim ad minim veniam.
3. Duis autem vel eum iriure dolor.

Now let’s say that you want to replace the space after each
number and period with a tab. You could enter the following
string of characters into the “Find what” box:

^013[0-9]@.^032

As you probably recall, that tells Microsoft Word to do the
following:

Find a paragraph mark: ^013
followed by a number: [0-9]
followed by one or more numbers, if there are any: @
followed by a period
followed by a space

But that still won’t let us replace that space with a tab. Why?
Because there’s no way to replace the space independently of the
rest of the string—whatever the string finds includes the space.

So let’s try this:

(^013[0-9]@.)(^032)

Notice that we’ve grouped the wildcards and other characters
together with parentheses. (That’s our uncooperative space be-
tween the last two parentheses.) Such groups, for reasons known
only to the mathematically minded, are called “expressions,” and
in this case there are two of them:

1. (^013[0-9]@.)

2. (^032)

36 Finding and Replacing with Wildcards

Grouping things together like this makes it possible to refer to
each group independently in the “Replace with” box—a wonder-
ful thing! So in the “Replace with” box, we’ll enter this string:

\1^t

That “\1” is an example of the little-known “Find What Ex-
pression” wildcard, which lives deep in the wilds of Redmond,
Washington, and only comes out at night. It’s a backslash fol-
lowed by the number one, and it tells Word to replace whatever
is found by the first expression—

(^013[0-9]@.)

—with whatever the first expression finds. (Yes, you read that
correctly.) In other words, Word replaces whatever the first ex-
pression finds with itself. That seems strange, but it means we
can treat the second expression—

(^032)

—as an independent unit, which is exactly what we need to do.
The ^t, of course, is the code for a tab.

You’ll notice that we haven’t included a “\2” code, which
would replace something with whatever is found by our second
expression, the space in the parentheses. Since we haven’t in-
cluded that code, the space will be replaced by nothing—in other
words, it will be deleted during the find and replace. So the re-
lationship between the wildcards in the “Find what” string and
the “Replace with” string is something like this:

Find what: Replace with:
(^013[0-9]@.) \1 (followed by a tab: ^t)
(^032) [nothing]

Now let’s try using them:

1. In the “Find what” box, enter this: (^013[0-9]@.)(^032)

2. In the “Replace with” box, enter this: \1^t

3. Click the “Replace All” button.

Finding and Replacing with Wildcards 37

Presto! The spaces after your numbers will be replaced with tabs:

1.<tab>Lorem ipsum dolor sit amet.
2.<tab>Ut wisi enim ad minim veniam.
3.<tab>Duis autem vel eum iriure dolor.

To me, this is like magic, and it comes in handy more often
than you might think. I hope you’ll find it useful.

USING THE “FIND WHAT EXPRESSION” WILDCARD

In the previous example, I introduced the “Find What Expres-
sion” wildcard (\n), which is the only wildcard that can be used
in the “Replace with” box. In fact, if you click the “Special” button
while your cursor is in the “Replace with” box, you’ll get this:

The first item on the list is the “Find What Expression” wild-
card. Everything else will give you one of Word’s built-in codes.

The “Find What Expression” wildcard is really important be-
cause it’s so powerful. It’s especially useful for moving things
around. Let’s say you’ve got a list of authors, like this:

38 Finding and Replacing with Wildcards

Emily Dickinson
Ezra Pound
Willa Cather
Ernest Hemingway

And let’s say you need to put last names first, like this:

Dickinson, Emily
Pound, Ezra
Cather, Willa
Hemingway, Ernest

You can use the “Find What Expression” wildcard to do this
in a snap.

In the “Find what” box, enter this:

^013([A-z]@) ([A-z]@)^013

By now, you’ll probably understand these codes and wildcards:

^013 represents a paragraph mark.
[A-z] represents any single alphabetic character, from uppercase

A to lowercase z.
@ represents any additional occurrences of the previous

character—in this case, any single alphabetic character, from up-
percase A to lowercase z.

() groups [A-z]@ together as an “expression” representing an
author’s first name. (This grouping is the key to using the “Find
What Expression” wildcard in the “Replace with” box.)

The space after the first ([A-z]@) expression represents the space
between first name and last name.

The next ([A-z]@) group represents the author’s last name.
The final ^013 represents the paragraph mark after the name.

Now, in the “Replace with” box, enter this:

^p\2, \1^p

The ^p codes represent paragraph marks. “Wait a minute,”
you say. “You just used ^013 for a paragraph mark. Why the
change?”

Finding and Replacing with Wildcards 39

Excellent question. The answer has two parts:

1. If we could use ^p in the “Find what” box, we would. But since
Word won’t let us do that when using wildcards (it displays an er-
ror message), we have to resort to the ANSI code, ^013, instead.

2. If we use ^p in the “Replace with” box, Word retains the for-
matting stored in the paragraph mark (a good thing). If we use
^013, Word loses the formatting for the paragraph (a bad thing).
In a list of author names, this probably doesn’t matter, but you’ll
need to know this when finding and replacing with codes in more
complicated settings.

Continuing with our example:

^p\2, \1^p

\2 is the “Find What Expression” wildcard for our second ex-
pression (hence the 2) in the “Find what” box—in other words,
it represents the last name of an author in our list.

The comma follows this wildcard because we want a comma
to follow the author’s last name.

A space follows the comma because we don’t want the last and
first names mashed together, like this: “Pound,Ezra.”

\1 is the “Find What Expression” wildcard for our first expres-
sion (hence the 1) in the “Find what” box—in other words, it
represents the first name of an author in our list.

Now click the “Replace All” button. The authors’ names will
be transposed:

Dickinson, Emily
Pound, Ezra
Cather, Willa
Hemingway, Ernest

You’ve always wondered how to do that, right? But now you’re
wondering about middle initials. And middle names. And Ph.D.s.
All of those make things more complicated. But here, in a nut-
shell, are the find and replace strings you’ll need for some com-
mon name patterns (first last, first middle last, first initial last,
and so on). First comes the name pattern, then the Find string,
and finally the Replace string, like this:

40 Finding and Replacing with Wildcards

Name Pattern
Find What
Replace With

William Shakespeare
^013([A-z]@) ([A-z]@)^013
^p\2, \1^p

Alfred North Whitehead
^013([A-z]@) ([A-z]@) ([A-z]@)^013
^p\3, \1 \2^p

Philip K. Dick
^013([A-z]@) ([A-Z].) ([A-z]@)^013
^p\3, \1 \2^p

L. Frank Baum
^013([A-Z].) ([A-z]@) ([A-z]@)^013
^p\3, \1 \2^p

G. B. Harrison, Ph.D.
^013([A-Z].) ([A-Z].) ([A-z]@,) (*)^013
^p\3 \1 \2, \4^p

J.R.R. Tolkien
^013([A-Z].)([A-Z].)([A-Z].) ([A-z]@)^013
^p\4, \1\2\3^p

That list doesn’t show every pattern you’ll encounter, but it
should provide enough examples so you’ll understand how to
create new patterns on your own—which is the whole point.
Once you’ve created all of the patterns you need, you could
record all of that finding and replacing in a single macro that
you could run whenever you need to transpose names in a list.
(Please see my book Macro Cookbook for Microsoft Word.)

USING WILDCARDS WITH ANSI CODES

Wildcards are powerful, but they do have a problem. If you’re
doing a wildcard search (you’ve put a check in the “Use wild-
cards” box), some of Word’s built-in codes won’t work in the
“Find what” box. That means you’ll have to use ANSI codes in-
stead. For example, here’s Word’s built-in code to search for foot-
notes:

Finding and Replacing with Wildcards 41

^f

If you try to use that code while searching with wildcards,
you’ll get an error message that ^f is not valid while using
wildcards. So instead of using ^f, you’ll need to use the ANSI
equivalent (which finds endnotes as well as footnotes):

^02

Here’s a list of the built-in codes that do and don’t work with
wildcards, along with some wildcard and ANSI equivalents for
those that don’t:

Character Works
with
wildcards

Doesn’t
work with
wildcards

Wildcard
or ANSI
equiva-
lent

Annotation Mark
(comment)

^a

Any character ^? ?
Any digit ^# [0-9]
Any letter ^$ [A-z]
Caret character ^^
Column break ^n
Em dash ^+
En dash ^=
Endnote mark ^e ^02
Field ^d ^019
Footnote mark ^f ^02
Graphic ^g ^047
Line break ^l
Manual page break ^m
Nonbreaking hyphen ^~
Nonbreaking space ^s
Optional hyphen ^-
Paragraph mark ^p ^013
Section break ^b ^012
Tab character ^t
White space ^w [^s^t^032]

42 Finding and Replacing with Wildcards

Let’s look at another example: Let’s say that (for some reason)
you’re searching for “wh” followed by any other character (the
wildcard for which is “?”), followed by a carriage return. In the
Find dialog’s “Find what” box, you enter this:

wh?^p

You put a check in the box labeled “Use wildcards” and click
the “Find” button. And there’s that doggone error message:

^p is not a valid special character for the Find What box or is
not supported when the Use Wildcards check box is selected.

“Well then, how,” you politely ask your computer, “am I sup-
posed to find what I’m looking for?” As usual, it doesn’t reply, but
here’s the answer anyway. In the “Find what” box, you enter this:

wh?^013

Ordinarily, you should use built-in codes like ^p and ^b. But
when they don’t work, you’ve got an alternative.

Finding carriage returns on a Macintosh

At least, on a PC you’ve got an alternative. On a Macintosh, even
numeric codes don’t always work with wildcards. In particular,
the numeric code for a paragraph break won’t work:

^013

But there is a solution: Use the ^013 but “escape” it with a
backslash and treat it as a range with square brackets:

[\^013]

If you need to specify not a carriage return, use this:

[!\^013]

On a Mac, you may need to do the same thing with other ANSI
codes in addition to ^013.

Chapter 5

Wildcards in the Real World

WHAT’S YOUR HANDLE?

When faced with a situation requiring a complex find and re-
place in Microsoft Word, many people have no idea even where
to begin. If you’re one of those people, here’s the secret: Find
the handle.

What do I mean by “handle”? Something your find and replace
routine can grab onto to do what it needs to do. For example, I
remember one particular 500-page manuscript that had no style
formatting for its different text levels—something I’m sure your
authors would never give you. Basically, the text looked like this
(but there was a lot more of it, of course):

This Is a Heading

This is some text. And several paragraphs more.

JML

This Is a Heading

This is some text. And several paragraphs more.

ED

This Is a Heading

This is some text. And several paragraphs more.

CBD

So there I am, badly needing styles to be applied and yet not
wanting to do it by hand. The first thing I looked for was a han-
dle—some regularly occurring pattern that I could find and then

43

44 Wildcards in the Real World

replace with itself but now with a style applied. Since this author,
like many authors, was utterly ignorant of the proper way to put
line spacing in front of a heading (by modifying “space before”
in the heading style), he’d inserted two extra carriage returns in
front of every main heading—and nowhere else. There was my
handle!

So I typed this into the “Find what” box:

^013^013^013(*)^013

And I typed the Find What Expression code, surrounded by
carriage returns, into the “Replace with” box:

^p\1^p

After typing in my find and replace strings, I clicked the More
button to display the other find and replace options. I clicked
the Format button, then “Styles,” and then “Heading 1” so the
replaced text would be formatted with that style. I put a check
in the “Use wildcards” checkbox. Then I clicked the “Replace All”
button.

Ta-da! All of my main headings (and author attributions) were
now formatted with the Heading 1 style.

So, how about those author attributions? There sure were a
lot of them—each on its own line at the end of each short article.
And each one was simply the author’s initials—JML, ED, CBD,
and the like. There was my handle—two or more capital letters
preceded and followed by a carriage return.

In the “Find what” box I typed this:

^013([A-Z]{2,})^013

And in the “Replace with” box I typed this:

^p\1^p

Again, I clicked the Format button, then “Styles,” and this time
“Heading 2” so the replaced text would be formatted with that
style. I made sure the check was still in the “Use wildcards”
checkbox. Then I clicked the “Replace All” button, which format-
ted all of those authors’ initials with the Heading 2 style.

Wildcards in the Real World 45

The final thing I needed to style was the paragraphs between
each occurrence of Heading 1 text and Heading 2 text. There
were no obvious handles associated with that text, but it did
have those styled headings above and below it. Could I use those
for my handles? Yes, but first I’d need to mark them with some
arbitrary codes. Why? Because there’s no way to find Heading 1
and some text and Heading 2, all in one pass. So here are the
searches (this time with “Use wildcards” turned off) that I used
to mark those headings:

Find what:

Heading 1 formatting

Replace with:

^&<H1>

Find what:

Heading 2 formatting

Replace with:

<H2>^&

That left me with an <H1> code at the end of each Heading
1 (really, at the beginning of the paragraph following it) and
an <H2> code at the beginning of each Heading 2. Excellent
handles indeed!

My final step was to search for those codes and the text be-
tween them, removing the codes and styling the text as Body
Text. Piece of cake:

Find what (with "Use wildcards" turned on):

\<H1\>(*)\<H2\>

Replace with (formatted with the Body Text style):

\1

46 Wildcards in the Real World

And that did the job. I still had some cleanup to do (like elimi-
nating double carriage returns), but by looking for the handles in
the text I was editing, I was able to style a 500-page document
in less than five minutes.

The next time you’re faced with a similar chore, don’t just slog
through the document doing everything by hand. Instead, see
if there are some handles that will let you automate the whole
process. You won’t always find them, but you’ll find them often
enough to make the effort well worth your while.

If you spend much time doing the kind of thing this article de-
scribes, you really should try my RazzmaTag program, which will
automate a whole raft of complex find-and-replace operations
(including formatting) over a whole raft of documents. You can
learn more here:

http://www.editorium.com/razzmatag.htm

For something a little simpler to use, you might be interested
in my MegaReplacer program:

http://www.editorium.com/14843.htm

MORE REAL-LIFE EXAMPLES

You might be interested in seeing some of the wildcard com-
binations I’ve used in a few other editing projects. Maybe you’ll
find them useful too.

Example 1

One manuscript I worked on had lots of parenthetical references
like this:

(Thoreau, Walden, p 10.)

You’ll notice that there’s no period after the p. To fix these
references, I used the following string in Microsoft Word’s “Find
what” box:

p ([0-9]@.\))

Wildcards in the Real World 47

That’s an odd-looking thing with its double parentheses, but
its meaning becomes clear when you consider that the first clos-
ing parenthesis represents the closing parenthesis of the refer-
ence. The backslash in front of it tells Word to treat it as a char-
acter rather than the end of a group “expression.” So the whole
string says this:

1. Find a p followed by a space.

2. Find, as a group, one or more digits followed by a period followed
by a closing parenthesis.

I put this in the “Replace with” box:

p. \1

And that string says this:

1. Replace the p followed by a space with p followed by a period and
a space.

2. Replace the rest of the “Find what” string (the group in parenthe-
ses) with itself.

When I was finished finding and replacing, the references looked
like this:

(Thoreau, Walden, p. 10.)

Example 2

Here’s another example:

(Genesis 8:26)

You’ll notice that there’s no period before the closing parenthe-
sis. Wanting to fix these, I put this string in the “Find what” box:

([0-9]@:[0-9]@)\)

It says:

1. Find, as a group, any number of digits followed by a colon followed
by any number of digits.

48 Wildcards in the Real World

2. Find a closing parenthesis character.

I put this in the “Replace with” box:

\1.)

And that string says:

1. Replace the group with itself.

2. Replace the closing parenthesis with a period and a closing paren-
thesis.

When I was finished finding and replacing, the references looked
like this:

(Genesis 8:26.)

“Why,” you may be wondering, “did you have to use wildcards?
Why didn’t you just find a closing parenthesis and replace it with
a closing parenthesis and a period, like this:

Find what:

)

Replace with:

.)

I couldn’t do that because the manuscript had other paren-
thetical items (like this one) that didn’t need a period. Using
wildcards makes it possible to find exactly the items you want
and ignore those you don’t.

Example 3

The manuscript also had Bible references that looked like this:

II Corinthians
II John
II Kings

Wildcards in the Real World 49

I wanted them to look like this:

2 Corinthians
2 John
2 Kings

I put this in the “Find what” box:

II ([A-Z])

That says:

1. Find “I” followed by “I” followed by a space.

2. Find any capital letter.

And I put this in the “Replace with” box: 2 \1 – which says:

1. Replace the “II” with a “2”.

2. Replace the capital letter with itself.

Worked like a charm.
“Why,” you ask, “didn’t you just replace “II” with “2” through-

out the manuscript rather than use wildcards?” Well, I could
have. But I was also thinking about other entries like these:

I Corinthians
I John
I Kings

Obviously, I couldn’t just replace “I” with “1” throughout the
manuscript, so I used this in the “Find what” box:

I ([A-Z])

and this in the “Replace with” box:

1 \1

and that took care of the problem.
I hope you’re beginning to see how powerful wildcards can

be and how much time they can save while you’re editing a

50 Wildcards in the Real World

manuscript. Using wildcards, you can quickly fix repetitive prob-
lems that would take hours to correct by hand. I highly encour-
age you to try them, but I also urge you to back up your docu-
ments and experiment on some junk text before using wildcards
in the “real world.” Also, try finding and replacing items individ-
ually before replacing all of them globally. Then you’ll know that
the wildcards you’re using actually do what you need to have
done.

ADDING PERIODS TO LISTS

A book I recently edited had lots of lists—with no terminal
punctuation. The lists looked something like this:

1. Text of the first item
2. Text of the second item
3. Text of the third item

As I worked, I found myself jumping to the end of each line
and typing in a period, like this:

1. Text of the first item.
2. Text of the second item
3. Text of the third item

Then this:

1. Text of the first item.
2. Text of the second item.
3. Text of the third item

And finally this:

1. Text of the first item.
2. Text of the second item.
3. Text of the third item.

After two or three lists, I realized how silly this was. The so-
lution is elementary:

1. Select all the items in your list, including the paragraph mark on
the final item.

Wildcards in the Real World 51

2. Bring up the “Find and Replace” dialog.

3. In the “Find what” box, enter this (the code for a paragraph mark):
ˆp

4. In the “Replace with” box enter this (a period followed by the
code for a paragraph mark): .ˆp

5. Click “Replace All.”

6. If Word asks if you want to search the rest of your document, click
No; all you want to search is the list you selected.

That should do the trick. And, of course, if you want to remove
periods rather than add them, follow the same procedure but
swap the contents of the “Find what” and “Replace with” boxes.

TWO-STEP SEARCHING

While editing in Microsoft Word, I often need to find some-
thing that’s partially formatted and replace it with something
else. For example, let’s say a manuscript has a bunch of super-
script note numbers preceded by a space that’s not in superscript.
Here’s an example:

Lorem ipsum dolor sit amet. 1

I’d like to have Word find all such spaces and replace them
with nothing (in other words, delete them), so that the result
looks like this:

Lorem ipsum dolor sit amet.1

Unfortunately, that doesn’t seem possible. I can open set the
“Find what” box to superscript, but the space isn’t superscript,
and the manuscript has thousands of spaces that don’t precede a
superscript number. It also has numbers that aren’t superscript
(like “2015”), so I can’t just find spaces preceding numbers.
What’s an editor to do?

Find and replace the spaces in two steps rather than one:

1. Mark the superscript with codes.

2. Delete the spaces and codes.

52 Wildcards in the Real World

Step 1

To mark the superscript with codes, do this:

1. Put your cursor in the (otherwise empty) “Find what” box.

2. Click the “Format” button.

3. Click “Font.”

4. Put a checkmark in the “Superscript” box.

5. Click the “OK” button. The “Find what” box should now be set to
superscript.

6. Put your cursor in the “Replace with” box.

7. Type the following string in the “Replace with” box:

<S>^&

Now click “Replace All.” Superscript numbers will be replaced
with themselves, preceded by <S> (which code I just made up
to indicate superscript). In other words, your sentences will now
look like this:

Lorem ipsum dolor sit amet. <S>1

Feel free to make up your own codes for whatever you need
(italic, bold, paragraph styles, and so on). I frequently use %%%
and ~~~ as code delimiters because they don’t need to be “es-
caped” when finding them with wildcards, as angle brackets do.

The other code in the “Replace with” box, ^&, is Microsoft
Word’s “Find What Text” code (discussed earlier), which repre-
sents the text that was found (the superscript numbers).

Step 2

To delete the spaces and codes, do this:

1. Type “^032<S>” in the “Find what” box.

2. Click the “No Formatting” button so you’re no longer finding
superscript, which is now represented by the <S> code.

3. Put your cursor in the “Replace with” box and make sure the box
is empty.

Wildcards in the Real World 53

4. Click “Replace All.”

All of the spaces in front of the codes (and thus in front of the su-
perscript numbers) will be deleted, as will the codes themselves,
leaving your sentences looking like this:

Lorem ipsum dolor sit amet.1

You can use this little two-step trick any time you need to find
and replace partially formatted text. Now that you know how,
that will probably be quite often.

Having said that, however, I can see a possible problem with
this approach to fixing note references. What if your manuscript
includes other superscript items in addition to note references?
If it does, you may not want to remove the spaces in front of
those items. The solution is is simple: rather than searching for
superscript (in a two-step approach), just search for a space in
front of a “grouped” note reference number, like this:

^032(^02)

Replace whatever was found with this:

\1

But if you want to do a wildcard search with footnotes (^f)
or endnotes (^e) only, you’re out of luck; Word won’t let you.
But again, here’s where two-step searching can come in handy.
For example, to remove spaces in front of footnotes alone, you
could search for this:

^032^f

And replace with this (using the “Find What Text” code),
which will put a percent sign in front of the space:

%^&

Then search for this:

%^032

54 Wildcards in the Real World

And replace it with nothing (thus deleting the percent sign
and space.)

FINDING "WHOLE WORDS ONLY" WITH WILDCARDS

Microsoft Word won’t let you specify “Find whole words only”
when the “Use wildcards” option is checked. This is more than an
annoyance; sometimes you really need to be able to find whole
words only while searching with wildcards.

One solution is to include a space before and after the words
you’re looking for. Of course, not every word begins or ends
with a space; words are often preceded or followed by quota-
tion marks, dashes, and other characters, which would require
multiple searching and replacing.

That suggests another solution: Use a wildcard “group” that
includes every possible character that might precede or follow a
word. For example, if we were searching for the word “bet,” we
could use a group like this before the word in the “Find what”
box:

["-_/]

That character range (preceding “bet”) would find the follow-
ing text:

bet [preceded by a space]
“bet
-bet
_bet
/bet

We’d need a similar group after the word:

[.,;:\!"-_/]

That character range (following “bet”) would find the follow-
ing text:

bet [followed by a space]
bet.
bet,

Wildcards in the Real World 55

bet;
bet:
bet!
bet”
bet-
bet_
bet/

So our entire “Find what” string would look something like
this:

["-_/]bet[.,;:\!"-_/]

So far so good, but there ought to be an easier way. How about
using a group to specify what not to find before and after the
word we’re looking for—like this:

[!A-z]bet[!A-z]

That string tells Word to find the word “bet” preceded and
followed by any nonalphabetic character, which would certainly
omit “bet” as part of another word. If we wanted to find “bet”
both capped and lowercased, we could use this string:

[!A-z][b,B]et[!A-z]

These approaches are clever, and they will certainly work. In
some situations, they (or variations of them) may be the best
way to go, which is why I’ve included them here. However, we
also need to remember that Microsoft Word includes a wildcard
code for “beginning of word” (<) and "end of word (>).”

So, if we needed to find the whole word “bet” in a wildcard
search, we could put this in the “Find what” box:

<bet>

That string would find “bet” but not “better” or “sorbet”—in
other words, it would find “bet” as a whole word only!

Using < and > is probably the most elegant (and the easiest)
way to find whole words only while searching with wildcards.

56 Wildcards in the Real World

WILDCARD SEARCHING WITH TRACKED CHANGES

Have you ever put together a clever wildcard find and replace
routine that you know should work, but when you run the rou-
tine, you end up with something unexpected? You do it all the
time? So do I, but that’s not quite what I meant. I’m thinking
specifically about routines that use the “Find What Text” code or
the “Find What Expression” code, discussed earlier.

Let’s say you’ve got a document that has revision tracking
turned on (Tools > Track Changes), and in that document is
a numbered list, like this:

1. First
2. Second
3. Third

Let’s also say you want to use a wildcard find and replace to
change the list to this:

(1) First
(2) Second
(3) Third

You should be able to do it like this:

1. In the “Find what” box, enter this:

([0-9]@)(.)

2. In the “Replace with” box, enter this (with a space after it):

(\1)

3. Click the button labeled “Replace All.”

But it won’t work. What you’ll get is a list that looks like this:

1() First
2() Second
3() Third

How frustrating!

Wildcards in the Real World 57

The problem is a bug in Word’s wildcard find and replace en-
gine. The easy way around the problem is to turn off revision
tracking before doing the find and replace.

If you need the changes to be tracked, however, you’re in trou-
ble. I know of one possible solution:

1. Keep a backup copy of your original document.

2. Do your find and replace with revision tracking turned off.

3. Use Review > Compare > Compare to mark the differences be-
tween the changed document and your backup copy.

Expert word whacker Hilary Powers offers the following advice:

The Wildcard and Revision Tracking features do bad things to
each other. Some simple replaces will work with tracking on, but it’s
hard to predict which ones are safe and which ones will scramble
the new info. Before running any wildcard replace operation, it’s
best to save the file and then turn the tracking off. Run the replace,
check to see if it worked, then turn the tracking back on.

DELETING DUPLICATE PARAGRAPHS

You can use wildcards to delete duplicate paragraphs, which
comes in handy most often when working with lists, like this one:

Jane Austen
Charles Dickens
Louisa May Alcott
Victor Hugo
Edgar Allen Poe
Jane Austen
Herman Melville
G. K. Chesterton
George Orwell
Ezra Pound
Jane Austen
Charles Dickens
T. S. Eliot
Victor Hugo

58 Wildcards in the Real World

If that list were long, it would be difficult to spot any dupli-
cated names, but a good start would be this:

1. Select all the names in the list.

2. On Word’s ribbon interface, click Home > Paragraph > Sort:

Set the options to sort by paragraphs composed of ascending
text with no header row. Then click the OK button:

The names will be sorted alphabetically, like this:

Charles Dickens
Charles Dickens
Edgar Allen Poe
Ezra Pound
G. K. Chesterton

Wildcards in the Real World 59

George Orwell
Herman Melville
Jane Austen
Jane Austen
Jane Austen
Louisa May Alcott
T. S. Eliot
Victor Hugo
Victor Hugo

You could then scroll through the list and manually delete the
duplicates, but a faster and easier way would be to use wild-
cards:

Find what:

^013([!^013]@)^013\1

Replace with:

^p\1

Here’s what those mean:

Find a paragraph break: ^013
followed by any character that’s not a paragraph break: [!^013]
as many times as necessary: @
with the previous two items grouped in parentheses:

([!^013]@)
followed by a carriage return: ^013
followed by whatever was found by the grouped expression: \1

Then we replace whatever was found with this:

A carriage return: ^p
followed by whatever was found by the grouped expression: \1

In other words, we find a name, followed by itself, and replace
both of those with the name.

You may need to run that find and replace several times to get
all the duplicates. For example, in our list above, “Jane Austen”

60 Wildcards in the Real World

is repeated three times. Running the find and replace one time
will delete the first duplicate, but you’ll need to run it again to
get the second one. To make sure you get all the duplicates, run
the find and replace over and over again until Word tells you it
has “made 0 replacements”:

At that point, the list will look like this, with all of the duplicates
removed:

Charles Dickens
Edgar Allen Poe
Ezra Pound
G. K. Chesterton
George Orwell
Herman Melville
Jane Austen
Louisa May Alcott
T. S. Eliot
Victor Hugo

CONSIDERING CONTEXT

When working with wildcards, you always have to consider
the context—in other words, all of the text you’re working with,
not just the text you’re trying to find. If you don’t, you may in-
advertently find and replace something you don’t want to find
and replace.

Let’s say we’re editing a document with lots of numbered lists:

1. Lorem ipsum dolor sit amet.
2. Ut wisi enim ad minim veniam.
3. Duis autem vel eum iriure dolor.

Wildcards in the Real World 61

But we want to replace the period and space after each num-
ber with a tab, so the lists look like this:

1 Lorem ipsum dolor sit amet.
2 Ut wisi enim ad minim veniam.
3 Duis autem vel eum iriure dolor.

What shall we search for? Let’s use this:

^013[0-9]@.

Why the ^013 at the beginning? Because we don’t want to
find the number in something like this:

Columbus sailed in 1492. He sailed a long time.

The ^013 at the beginning of our find string ensures that only
the numbers on lists will be found.

^013[0-9]@.

Again, you always have to consider the context in which you
are working. What else is in the text that your wildcards might
find but that you don’t want them to find? Figure that out and
then modify your wildcards to accommodate the problem. One
of the best ways to do that is to repeatedly click the “Find” but-
ton and see what turns up. If you find something unexpected,
it’s time to fix your wildcard string so it doesn’t find something
unexpected. Once you’re confident that your wildcards are work-
ing properly, it’s probably safe to click the “Replace All” button.
But what if you later find that your find and replace has royally
messed something up? Now what? Well, that’s why you should
always back up your document before running a complex find
and replace. Always, always, always.

DEALING WITH ERRORS

And then there are outright errors while using wildcards. Con-
sider the following Find string:

^013[(0-9]@.)

62 Wildcards in the Real World

If you try to use it, you’ll get an error message:

Why is that? Can you see the problem?
That’s right—the first square bracket and parenthesis are trans-

posed. The string should look like this:

^013([0-9]@.)

So watch those brackets and parentheses! And if you start
running into problems, don’t panic. Instead, divide and conquer;
break your string down into its component parts and test each
part separately. For example, let’s say we have a complex string
like this one:

<[A-Z]{1}[a-z]@.^032\([0-9]{2}:[0-9]{4}.\])

When we run it, we get that doggone error message, which
means there’s something wrong with our wildcard string. So first
let’s test this:

<[A-Z]{1}

That works okay. Now let’s add this and test again:

[a-z]@.^032

That also works okay. So we’ll add this and test again:

\([0-9]{2}:

Still okay. We add the final bit and try again.

[0-9]{4}\])

Wildcards in the Real World 63

Oops! This time we get the error message, so that’s not okay.
But at least we know that the problem is (probably) in the final
part of the string, so we check that part carefully. Aha! See that
closing parenthesis at the end of the string?

<[A-Z]{1}[a-z]@.^032\([0-9]{2}:[0-9]{4}.\])

It shouldn’t be there. We probably added it because there’s
an opening parenthesis in the middle of the string, which led us
to think we we were creating a group. But we had previously
“escaped” the opening parenthesis because we were looking for
an actual parenthesis rather than using a parenthesis as a wild-
card. Our string should actually have no group at all! We remove
the closing parenthesis, and now our wildcard string works as it
should:

<[A-Z]{1}[a-z]@.^032\([0-9]{2}:[0-9]{4}.\]

When you use wildcards a lot, you’ll run into stuff like this all
the time. The solution is to slow down and test, test, test until
you find the part of the string that’s causing the problem.

Working with wildcards isn’t really that difficult; it’s just a mat-
ter of thinking logically and taking one step at a time. First get
your ducks in a row:

Then knock ’em down, one after another (after another, after
another) until everything is working exactly as it should.

64 Wildcards in the Real World

NUMBERS BY CHICAGO

Years ago I worked on a manuscript with lots of source cita-
tions that had page numbers formatted like this:

122-123

I prefer the shorter style recommended in the Chicago Manual
of Style (8.69):

122-23

And besides, the manuscript was inconsistent, sometimes us-
ing one style, sometimes the other. Not wanting to fix all of these
by hand, I decided to put the old wildcard search to work.

The first thing I needed to do was simplify things. Consider
the style for even hundreds:

100-109
100-119
100-201

In all such cases, the numbers were already in the correct style,
so I decided to just get them out of the way, like this:

Find what:

00-

Replace with:

~~-

(Those tildes are just arbitrary placeholders to be turned back
to zeroes later.)

With that taken care of, I originally thought I could change all
the other numbers like this:

Find what:

([0-9]{3}-)[0-9]([0-9]{2})

Wildcards in the Real World 65

Replace with:

\1\2

That “Find what” string finds any set of three {3} numbers
[0-9] followed by a hyphen, followed by a single number [0-
9], followed by any set of two {2} numbers [0-9]. The items in
parentheses are treated as as a group.

The “Replace with” string replaces the first parenthetical group
with itself and the second parenthetical group with itself, leaving
out any number [0-9] that was not grouped in parentheses.

That will definitely change 122-123 to 122-23, but it will also
change 308-309 to 308-09, so we’ll need to get a little fancier.
How about this?

Find what:

([0-9]{3}-)[0-9]([1-9]{2})

Replace with:

\1\2

Notice that I’ve changed that last number range to [1-9] rather
than [0-9]. That means numbers like 308-309 will not be found
but numbers like 308-319 will. (Come to think of it, that sin-
gle number in the middle could probably be [1-9] as well, since
there shouldn’t be any page numbers like 308-019. Of course,
you never know.) Now, does that solve the problem?

Well, no. We still need to deal with numbers like this:

398-415

We certainly don’t want that changing to 398-15. And what
about this?

247-517

Unlikely, I’ll admit, but still possible.
And that means we can’t do our find and replace all in one

shot. Instead, we’ll have to do 18 specific searches:

66 Wildcards in the Real World

(1[0-9]{2}-)1([1-9][0-9])
(2[0-9]{2}-)2([1-9][0-9])
(3[0-9]{2}-)3([1-9][0-9])
(4[0-9]{2}-)4([1-9][0-9])
(5[0-9]{2}-)5([1-9][0-9])
(6[0-9]{2}-)6([1-9][0-9])
(7[0-9]{2}-)7([1-9][0-9])
(8[0-9]{2}-)8([1-9][0-9])
(9[0-9]{2}-)9([1-9][0-9])
(10[1-9]-)10([1-9])
(20[1-9]-)20([1-9])
(30[1-9]-)30([1-9])
(40[1-9]-)40([1-9])
(50[1-9]-)50([1-9])
(60[1-9]-)60([1-9])
(70[1-9]-)70([1-9])
(80[1-9]-)80([1-9])
(90[1-9]-)90([1-9])

At least that’s how it originally looked to me (but more below).
You can do the searches by hand if you like. You’ve got 20

chapters, all in separate files? Let’s see—20 x 18 = 360 separate
searches. Ouch! Of course, you could use my MegaReplacer pro-
gram to do them all at once, freeing up your time for something
more interesting:

http://www.editorium.com/14843.htm

Don’t forget, we still need to turn those tildes back into zeroes:

Find what:

~~

Replace with:

00

Now all of those page numbers should be in Chicago style.
How beautiful!

“What about four-digit numbers?” you ask. I leave it as an
exercise for you to work out.

Wildcards in the Real World 67

If you’d like this whole thing ready to run in MegaReplacer,
here it is:

00-|~~-
(1[0-9]{2}-)1([1-9][0-9])|12+m
(2[0-9]{2}-)2([1-9][0-9])|12+m
(3[0-9]{2}-)3([1-9][0-9])|12+m
(4[0-9]{2}-)4([1-9][0-9])|12+m
(5[0-9]{2}-)5([1-9][0-9])|12+m
(6[0-9]{2}-)6([1-9][0-9])|12+m
(7[0-9]{2}-)7([1-9][0-9])|12+m
(8[0-9]{2}-)8([1-9][0-9])|12+m
(9[0-9]{2}-)9([1-9][0-9])|12+m
(10[1-9]-)10([1-9])|12+m
(20[1-9]-)20([1-9])|12+m
(30[1-9]-)30([1-9])|12+m
(40[1-9]-)40([1-9])|12+m
(50[1-9]-)50([1-9])|12+m
(60[1-9]-)60([1-9])|12+m
(70[1-9]-)70([1-9])|12+m
(80[1-9]-)80([1-9])|12+m
(90[1-9]-)90([1-9])|12+m
~~|00

NUMBERS BY CHICAGO, SIMPLIFIED

After perusing that lengthy find and replace routine to make
sure inclusive (elided) numbers follow the style outlined in the
Chicago Manual, astute reader Andrew Lockton responded with
a really slick technique I hadn’t previously known about. He sug-
gested taking the “Find What Expression” wildcard, which takes
the form \1, \2, and so on, and putting it not in the “Replace
with” box, where it is ordinarily used, but in the “Find what”
box—something I did not know was possible. Hats off to you,
Andrew!

Andrew’s discovery opens up all kinds of possibilities for vari-
ous problems I had previously been unable to solve, but let’s look
specifically at getting numbers by Chicago. The previous method
required 18 separate searches. Andrew’s brilliant methodology
requires only three. Here’s the explanation:

68 Wildcards in the Real World

1. Numbers that take the form 104-105 need to be converted
to 104-5:

Find what:

([1-9])0([1-9])-\10([1-9])

Replace with:

\10\2-\3

What’s going on there is that the first number grouping, ([1-
9]), is being referred to by the \1 that follows the hyphen—in
the “Find what” string. See it? Just before the 0 there? That
tells Word to find (again) whatever was found by the first num-
ber grouping. For example, when the search hits something like
“203-205,” it says, “Hey, my first number group finds 2 [the first
number in 203]. Let’s see, is there also a 2 after the hyphen? Yes,
there is!”

2. Numbers that take the form 104-110 need to be converted
to 104-10:

Find what:

([1-9])0([1-9])-\1([1-9])([0-9])

Replace with:

\10\2-\3\4

3. Numbers that take the form 111-112 or 119-120 need to be
converted to 111-12 or 119-20:

Find what:

([1-9])([1-9])([0-9])-\1([1-9])([0-9])

Replace with:

\1\2\3-\4\5

At first I thought it might be possible to combine 2 and 3:

Wildcards in the Real World 69

([1-9])([0-9])([0-9])-\1([1-9])([0-9])

But that would also find even hundreds (100, 200), which
need to be ignored (100-114 rather than 100-14).

Reader Jeanne Pinault suggested a different approach alto-
gether:

What I do with elided numbers is just replace all the hyphens
with en dashes and then fix whatever comes up wrong when I edit
the notes. That’s because every set of endnotes I see is wrong in
a slightly different way from every other set of endnotes I ever
saw, so I have to read every character anyway. I can see that your
marvelous find and replace would be a godsend with consistently
formatted and voluminous endnotes produced on a regular basis,
though. Are en dashes in there someplace?

Good question! I responded:

In the Find string, use ^0150 (the en-dash code) instead of
the hyphen.

On a Macintosh, you’d use ^0208.

FIXING CITATIONS: WE CAN DO THIS THE EASY WAY,
OR WE CAN DO THIS THE HARD WAY

American Editor Rich Adin called me recently with a puzzle.
He was editing a list of citations that looked like this:

Lyon J, Adin R, Poole L, Brenner E, et al: blah blah blah.

But his client wanted the citations to look like this:

Lyon J, Adin R, Poole L, et al: blah blah blah.

In other words, many of the citations included one author
name too many; the client wanted a limit of three rather than
four. And there were hundreds of citations. Rich really didn’t
want to remove the superfluous names by hand; it would have
taken hours to do, and hours are money. And so, Rich queried,
“Is there a way to remove the fourth name automatically?”

70 Wildcards in the Real World

There’s nearly always a way. Rich had already tried using a
wildcard search, but without success. Microsoft Word kept giving
him an error message:

The Find What pattern contains a Pattern Match expression
which is too complex.

The Too-Complex Find What

I’m not sure what wildcard search Rich tried to use, but it might
have looked like this:

Find what:

([A-Z][a-z]@ [A-Z],)([A-Z][a-z]@ [A-Z],)([A-Z][a-z]@ [A-Z],
)([A-Z][a-z]@ [A-Z],)(et al:)

Replace with:

\1\2\3\5

That’s definitely too complex. Here’s what it means:

Find a capital letter: [A-Z]
followed by a lowercase letter: [a-z]
repeated any number of times: @
followed by a space
followed by a capital letter: [A-Z]
followed by a comma
followed by a space
with all of that in parentheses to form a “group.”

All of that is repeated three more times, then followed by “et
al:” in parentheses to form a group.

The “Replace with” string tells Word to replace what it finds
with the contents of groups 1, 2, 3, and 5—in other words, with
the first three names followed by “et al:”.

Wildcards in the Real World 71

What’s the Handle?

But Word is telling us that the search is too complex, which
means we’ll need to simplify. So we ask ourselves, “What, be-
sides letters, do all of the names have in common?” In other
words, “What’s the handle? What can we grab onto?” Well, that’s
easy—each name is followed by a comma and a space. That’s
our handle!

The Find That Works

The handle means we can simplify our wildcard search string to
something like this:

Find what:

([!^013]@, [!^013]@, [!^013]@,)[!^013]@, (et al:)

Replace with:

\1\2

Here’s what that means:

Find any characters except a carriage return: [!^013]
repeated any number of times: @
followed by a comma
followed by a space
with all of that repeated three times
and enclosed in parentheses to form a “group.”
Then it’s repeated one more time, ungrouped
and followed by “et al:” in parentheses to form a group.

The “Replace with” string tells Word to replace what it finds
with the contents of groups 1 and 2—in other words, with the
first three names (group 1) followed by “et al:” (group 2). The
fourth name is simply ignored.

To Group or Not to Group

Rich ran the new find and replace, then replied, “Thanks, Jack,
that works like a charm. Why isn’t the second ‘group’ grouped,
that is, in parentheses? I thought that was necessary.”

72 Wildcards in the Real World

I replied, “No, it’s not necessary. You group only the items that
you want to reference (by \1, \2, etc.) in the ‘Replace with’ box.
You could group the other item, in which case you would use
‘\1\3’ in the ‘Replace with’ box. But there’s no need to do so.”

Note that this method of finding the names offers another ad-
vantage. Not only will it find names that look like this:

Lyon J,

it will also find names that look like this:

Lyon JM,

or even this:

Lyon JMQ

It will even find names like this:

Thaler-Carter Ruth,

Or like this:

Harrison G.B.H.,

In fact, it will find anything (except a carriage return) followed
by a comma and a space.

Why the Carriage Return?

“Why,” you may be wondering, “specify anything but a carriage
return? Why not specify letters instead?” Well, we could have
done that, using something like this:

Find what:

([A-z]@, [A-z]@, [A-z]@,)[A-z]@, (et al:)

Replace with:

\1\2

Wildcards in the Real World 73

That means:

Find any capital or lowercase letter or space: [A-z]
repeated any number of times: @
followed by a comma
followed by a space

And so on.
Such a wildcard string would find names like this:

Lyon J,

but not this:

Thaler-Carter R,

Yes, we could add a hyphen to our string, but then we start
to wonder about other characters we might need to include, and
then things get complicated again. And besides, it’s true that we
don’t want to include carriage returns in our search, so it makes
sense to exclude them. If we tried to simplify too far, we might
use this:

Find what:

(*, *, *,)*, (et al:)

Replace with:

\1\2

The problem with using the asterisk wildcard (*) is that it finds
any character any number of times, including tabs, spaces, car-
riage returns, and everything else you can think of. Sometimes
that’s useful, but more often it just leads to confusion. We want
to keep things simple but not too simple.

Why Wildcards?

To return to our original problem: Rich could have removed all
those extra names one at a time, by hand, which is doing it the
hard way and eats into the profit line—remember that time is

74 Wildcards in the Real World

money. Microsoft Word includes powerful tools for doing things
the easy way, so why not learn them and use them? If you’ve
read this far, you’re doing that, so congratulations.

FIXING CITATIONS: THE EASY WAY, NOT SO EASY

After I solved Rich’s citation problem, he wrote me again:

As written, your wildcard find and replace reduces four names
to three if “et al:” is the ending characteristic. How do you write it
so that it can handle any number of names, say up to seven?

Good question, and a nice challenge for a wildcard search.
Let’s say we have citations with strings of names like this:

Lyon J, Adin R, Carter TO, Jackson TT, Doe J, Smith K, Winger
W, et al: blah blah blah

That’s seven names, but let’s see if we can make a wildcard
string that will find any number of names and cut them down to
three. My first impression is that this might be difficult or even
impossible. But let’s try the following wildcard string:

([!^013]@,){3}([!^013]@,){1,}(et al:)

Here’s what that means:

Find any character except a carriage return: [!^013]
repeated any number of times: @
followed by a comma
followed by a space
and enclosed in parentheses to form a “group.”
Do that three times in a row: {3}
Find using the same group: ([!^013]@,)
if it occurs once or more (as indicated by the comma): {1,}
followed by “et al:” in parentheses to form a group.

There’s just one problem: It doesn’t work. And that’s how it
often is with wildcards—sometimes you have to fiddle around to
get the result you want; trial and error are key. So let’s see if we
can find just three instances of text using our group:

Wildcards in the Real World 75

([!^013]@,){3}

That doesn’t work either. Let’s try using the group three times
in a row:

([!^013]@,)([!^013]@,)([!^013]@,)

That does work. So why not this?

([!^013]@,){3}

Specifying a number (like {3}) has always worked in other
situations, so why not here? Let’s try using the same wildcard
string to find the first three names if the names are all identical
(yes, weird, but we’re testing here):

Lyon J, Lyon J, Lyon J, Lyon J, Lyon J, Lyon J, Lyon J, et al:
blah blah blah

Sure enough, that works! What in the world is going on?
Aha, aha! I’ve got it! It’s the @ that’s causing this weird behav-

ior. We haven’t provided a specific string of characters for {3} to
find; instead, the @ grabs the characters in front of the comma,
and they become the specific string of characters that {3} tries to
find (three times in succession). That specific string of characters
doesn’t exist three times in succession in our original citation, so
naturally Word can’t find it three times in succession. Whew!

Well, okay, then. For our current purposes, we’ll stop using
numbers (such as {3}) to specify how many times our pattern
should be repeated. Let’s try this instead:

([!^013]@, [!^013]@, [!^013]@,)[!^013]@(et al:)

Here’s what that means:

Find any characters except a carriage return: [!^013]
repeated any number of times: @
followed by a comma
followed by a space
repeated three times
and enclosed in parentheses to form a “group.”

76 Wildcards in the Real World

Then find any character except a carriage return: [!^013]
repeated any number of times: @
followed by “et al:” in parentheses to form a group.

Well, son of a gun; that actually works. So now we can use the
following in the “Replace with” box:

\1\2

Here’s what that means:

Replace everything that was found
with the text represented by group 1: \1
followed by the text represented by group 2: \2

Group 1, you’ll remember, was this:

([!^013]@, [!^013]@, [!^013]@,)

It finds the first three names in our citations. And group 2
was this:

(et al:)

It finds the end of our citations.
And so, finally, we’ve succeeded in fulfilling Rich’s original re-

quest:

As written, your wildcard find and replace reduces four names
to three if “et al:” is the ending characteristic. How do you write it
so that it can handle any number of names, say up to seven?

Sometimes the easy way isn’t so easy. Nevertheless, it’s almost
always worth pursuing. In Rich’s case, it reduced his editing
time from hours (removing extraneous names by hand) to min-
utes (removing the names with a wildcard find and replace). It
also gave Rich a wildcard search that he can save in his fabu-
lous EditTools software for use with future projects. And it pro-
vided a deeper and clearer understanding of how to use wildcard
searches.

Wildcards in the Real World 77

After all these years of editing, wildcard searching is the tool
I rely on the most. I encourage you to invest the time needed to
learn to use this tool, which will repay your efforts many times
over.

FIXING CITATIONS: FROM EASY TO IMPOSSIBLE—
THREE VARIATIONS ON A THEME

After that, Rich Adin sent one more request, which is okay
because I appreciate a good challenge:

Okay, Jack, you solved the problem of reducing the number of
authors from more than three down to three. But there is a caveat:
the list of names needs to end with “et al:”. So let me pose three
more variations.

Three?! Oh, all right. Here we go:

Variation 1

How do I handle instances where the ending is punctuation other
than “et al:”? For example, it could be a different punctuation mark
than the colon or it could end with an author name and not “et
al” (e.g., “Lyon J, Adin R, Carter TO, Jackson TT, Doe J, Smith K,
Winger W:” or “Lyon J, Adin R, Carter TO, Jackson TT, Doe J, Smith
K, Winger W, Hoffnagle TTP.”)

How do we handle instances where the ending is punctuation
other than “et al:”? Here are Rich’s examples, all laid out for our
inspection:

Lyon J, Adin R, Carter TO, Jackson TT, Doe J, Smith K, Winger W:
Lyon J, Adin R, Carter TO, Jackson TT, Doe J, Smith K, Winger

W, Hoffnagle TTP.

As discussed earlier, the key is to find the “handle,” the unique
elements we can grab to carry out our search. In Rich’s examples,
the “handles” would have to be the colon that ends the first en-
try and the period that ends the second. Let’s try modifying the
wildcard string that we used earllier:

78 Wildcards in the Real World

([!^013]@, [!^013]@, [!^013]@,)[!^013]@([:.])

Here’s what that means:

Find any characters except a carriage return: [!^013]
repeated any number of times: @
followed by a comma
followed by a space
repeated three times
and enclosed in parentheses to form a “group.”
Then find any character except a carriage return: [!^013]
repeated any number of times: @
followed by [:.] (specifying a colon or a period) in parentheses

to form a group.

And we can use the following in the “Replace with” box:

\1\2

Here’s what that means:

Replace everything that was found
with the text represented by group 1: \1
followed by the text represented by group 2: \2

But does that actually work? Well, sort of, Here’s what we get:

Lyon J, Adin R, Carter TO, :
Lyon J, Adin R, Carter TO, .

Maybe that’s close enough, as it would now be an easy matter
to search for comma space colon and replace it with a colon, and
to search for comma space period and replace it with a period.
But if we want to refine our search string even further, we could
use this:

([!^013]@, [!^013]@, [!^013]@), [!^013]@([:.])

Here, we’ve placed the comma and space following the third
name outside the parenthetical group, so they’re not included

Wildcards in the Real World 79

when the group is replaced by /1. That actually solves the prob-
lem, if you want to get precise, giving us a result like this:

Lyon J, Adin R, Carter TO:
Lyon J, Adin R, Carter TO.

Variation 2

Rich wrote:

How can I revise the string to work even if there is no consistency
in punctuation of names? For example, suppose the names are:
“Lyon, J, Adin R, Carter T.O., Jackson TT, Doe, J.; Smith K; Winger,
W; Hoffnagle TTP.”

As given, this can’t be done. Why? Because we’ve lost the
uniqueness of the comma “handles” that separate the names. For
example, instead of this—

Lyon J,

—we have this:

Lyon, J,

And instead of this—

Smith K,

—we have this:

Smith K;

So again, as given, we can’t fulfill Rich’s request. But can we
change the “as given”? Why, yes, we can! (And that makes this
another example of two-step find and replace. Well, three, really.
If circumstances won’t let you do what you need, you can change
those circumstances. This is often true in life as well as Microsoft
Word.)

80 Wildcards in the Real World

So let’s search for a lowercase letter followed by a comma
(after a last name) and replace it with just the lowercase letter:

Find what:

([a-z]),

Replace with:

\1

Then we can search for a semicolon (which sometimes follows
initials) and replace it with a comma:

Find what:

;

Replace with:

,

Finally, we can use the same wildcard string we used earlier
to fulfill Rich’s request:

Find what:

([!^013]@, [!^013]@, [!^013]@), [!^013]@([:.])

Replace with:

\1\2

You may be wondering if this will affect article titles and jour-
nal names and not just author names. The answer is, it depends.
I’m assuming that article titles and journal names don’t include
commas (just for purposes of illustration). But if they do, you
may have to get creative. Here’s an example:

Levy, D, Ehret G, Rice K, Verwoert G, Launer L, Dehghan A,
Glazer N, Morrison A, Johnson A, Aspelund T, Ganesh S, Chasman
D: Genome-wide association study of blood pressure, stress, and
hypertension. Nature 2009, 41(6): 677-687.

Wildcards in the Real World 81

See that comma after “Levy”? Above, we got rid of it with the
following strings:

Find what:

([a-z]),

Replace with:

\1

But notice that this will also remove the commas after “pres-
sure” and “stress” in the article title, which we don’t want to do.
The solution, again, comes down to handles. What do we have
that sets off the article title and journal name? In this example,
they’re preceded by the colon after the author names (“Chasman
D:”) and followed by a carriage return (at the end of the citation).
So here’s a rather sneaky solution: Search for a colon followed
by anything that isn’t a carriage return until you come to a car-
riage return. Then replace whatever was found with itself (^&)
formatted as Hidden:

Find what:

:[!^013]@^013

Replace with (using Hidden formatting):

^&

If you don’t know how to replace using formatting, here’s the
secret:

1. Put your cursor in the “Replace with” box.

2. Click the “More” button if it’s showing.

3. Click the “Format” button on the bottom left.

4. Click “Font.”

5. Put a check in box labeled “Hidden.”

6. Click the “OK” button.

82 Wildcards in the Real World

As explained earlier, you can replace with all kinds of format-
ting: styles, paragraph alignment, and so on. You can also use
formatting in the “Find what” box! This is really powerful stuff,
and if you didn’t know about it before, now you can add it to
your bag of tricks.

At any rate, with the article titles and journal names format-
ted as Hidden, you can make sure they actually are hidden by
clicking the “Show/Hide” button (with the pilcrow icon: ¶) on
Word’s “Home” tab. Then run your find and replace to remove
commas from last names:

Find what:

([a-z]),

Replace with:

\1

Finally, unhide the article titles and journal names (after using
“Show/Hide” to display them):

Find what:

(Hidden formatting)

Replace with:

(Not Hidden formatting)

At that point, the commas will be gone from the authors’ last
names but preserved in the article titles and journal names.

Variation 3

Rich wrote:

How can I adapt the wildcard string to delete those in excess of a
certain number? I have a client who wants up to ten author names
listed and “et al” used only for names eleven and following. I’d like
to specify how many names I want retained and replace the excess
with “et al.” For example, if there are fifteen names, delete the last
five if ten are okay and replace them with “et al.”

Wildcards in the Real World 83

Theoretically, we could do that as long as there’s a “handle”
that marks the end of the names. Let’s take this example:

Levy D, Ehret G, Rice K, Verwoert G, Launer L, Dehghan A, Glazer
N, Morrison A, Johnson A, Aspelund T, Ganesh S, Chasman D:
Genome-wide association study of blood pressure and hypertension.
Nature 2009, 41(6): 677-687.

There are actually twelve names there, so we want to keep
the first ten and replace the last two with “et al.” What’s our
handle? The colon after the last name (“Chasman D:”) and be-
fore the article’s title. So let’s try an expansion of the wildcard
search string we used earlier. Instead of grouping three comma-
separated names, we’ll group ten:

Find what:

([!^013]@, [!^013]@, [!^013]@, [!^013]@,
[!^013]@, [!^013]@, [!^013]@, [!^013]@, [!^013]@,
[!^013]@,)[!^013]@(:)

Replace with:

\1 et al.\2

That would work if Word could handle it. But if you try it,
Word will complain:

The Find What text contains a Pattern Match expression which
is too complex.

So now what? Honestly, I’m not sure. I tried several other pos-
sibilities, none of which were successful. So if you, Gentle Reader,
have any ideas about how to accomplish this seemingly impossi-
ble feat, I’d love to hear them.

Wildcard searching can’t do everything, but it can do an awful
lot. As I’ve said before, after all these years of editing, wildcard
searching is the tool I rely on the most. I encourage you to invest
the time needed to learn to use this tool, which will repay your
efforts many times over.

84 Wildcards in the Real World

WILDCARD DICTIONARY

Even though I use wildcard searches all the time, I don’t do
a very good job of saving my wildcard entries so I can use them
again. But really, I should save them all in a “wildcard dictionary”
that would include entries in the following format:

• A description of what the find and replace wildcard strings do.

• The wildcard find and replace strings themselves.

• Some key words I can search for if I’m looking for wildcard strings
for a certain purpose.

• Before-and-after examples of what the wildcard strings do.

• Other comments.

Here’s an example, with a wildcard string you may be able to
use:

Description: Find parenthetical publishing information in source
citations and replace it with nothing to help in changing citations
to short form.

Find What: ^032\([A-z ,.]@:[!)]@[0-9]{4}\)
Replace With: [nothing]
Key Words: publishing information, source, citation, footnotes,

endnotes, books, parentheses, long, short, delete
Before: Jack M. Lyon, Total Word Domination (Edina, Minn.:

PocketPCPress, 2001), p. 237.
After: Jack M. Lyon, Total Word Domination, p. 237.
Comments: Won’t find or delete other parenthetical text.

When I suggested that idea in my newsletter, I asked readers
to share their favorite wildcard strings. I’ve since heard from Ros-
alie Wells, Hilary Powers, Eric Fletcher, Allene Goforth, Michael
Coleman, Mary L. Tod, and Steve Hudson, who sent some great
wildcard strings and commentary on their use. Many thanks to
all of them!

And now, the wildcard dictionary entries!

Wildcards in the Real World 85

Rosalie Wells wrote:

I use this one all the time in my translations into Spanish to change
the decimal separator “period” to a “comma” separator as required
for many Spanish-speaking countries:

Find what: ([0-9]).([0-9])
Replace with: 1,2

Hilary Powers wrote:

I tend to design strings from scratch when needed, but here are a
couple that I use often enough to more or less remember them:

.([A-Z])|. 1

opens up initials on reference lists; requires fixing things like
U.S. and N.Y. after

([0-9]). |^t1.^t

indents hand-typed list numbers

[!.]^013 — review one by one and add periods by hand where
needed. There’s a way of scanning for more end-sentence punctua-
tion and doing the change automatically, but I’m usually too lazy
to look it up and this is what I remember. A complete punctuation
scan would be quite welcome. . . .

Eric Fletcher wrote:

I have my favourites in various Word files I seem to never get
around to consolidating. But here are a few I found without having
to look very hard:

Description: Finding a telephone number formatted as 123-4567.
Find What: ([0-9]{3})(-)([0-9]{4})
Replace With:
Key Words: Telephone number
Before:
After:

86 Wildcards in the Real World

Comments: This is handy for doing a quick review of phone
numbers. In Word 2002, you can choose to select all occurrences
so you can see them easily in context.

Description: Changing telephone numbers formatted as (123)
456-7890 or (123)456-7890 to 123-456-7890.

Find What: ([(])([0-9]{3})([)])(*)([0-9]{3})(-)([0-9]{4})
Replace With: 2-567
Key Words: Telephone number
Before: Telephone numbers formatted as (123) 456-7890 or

(123)456-7890.
After: Telephone numbers formatted as 123-456-7890 or 123-

456-7890.
Comments: Note that the (*) looks after catching situations where

there may or may not be a space after the area code portion.

Description: Find formatted text and change it to use HTML codes.
Find What: Font=Italic
Replace With: ^&
Key Words: Italic, HTML, formatting
Before: Change the italicized words to use HTML codes.
After: Change the italicized words to use HTML codes.
Comments: If you include Font=Not italic in the Replace with,

the italics will be removed as well. Use variations of this for any
formatting and other HTML codes.

Description: Find text coded with HTML and change it to Word
formatting.

Find What: ()(*)()
Replace With: 2 Font=Italic
Key Words: HTML, italic, formatting
Before: Change the italicized words to regular Word formatting.
After: Change the italicized words to regular Word formatting.
Comments: Use variations of this for any formatting and other

HTML codes.

When I recently referred someone to your tips about using wild-
cards in find and replace, it reminded me that I had intended to
send you some tips about techniques I use frequently.

Multi-step F&R to Set Styles: I often need to rationalize formatting
in jobs I do: setting styles, sometimes reducing the number of
styles, frequently setting up styles for translation to html. I use the

Wildcards in the Real World 87

wildcard features to simplify the process but sometimes need to
do it in several steps. One “routine” saved an enormous amount of
work in removing the typed numbers in ordered lists and setting
the style from Normal to List number.

1. The first F&R used “(ˆ013[0-9]@.)()” in Find; “\1þ” in Re-
place and used wildcards. The result is a unique code in each of the
ordered list paragraphs. (The pattern was from one of your tips. I
choose to use þ (ALT + 0254) as a unique character for later steps.)

2. The second F&R used “þ” in both find and replace without
wildcards and had Style=List Number set in the Replace with.
This caused the lines that had been flagged as starting with the
number-period pattern to be set in the desired style.

3. The final F&R used “[0-9]@.þ” in the Find and nothing in
the Replace with no styles but with wildcards. This caused the
numbers and my unique flag to be stripped, leaving the paragraphs
formatted with the List Number style as intended. I use a similar
technique for bullet lists. When the document is converted to html,
having the appropriate styles set saves a huge amount of effort.

Use Character Styles to Flag Items: I find character styles very use-
ful. When phrases or words need to be flagged for in-context review
on-screen, I often use F&R to tag them with a special character style.
Then, during review, I set the flag style definition to something that
really stands out—a bold colour—so I can see it in a zoomed view
of many pages at once. The items stand out and I can just click and
scroll-zoom in to examine them. To finalize the document, I replace
the style with the default character style to remove any remaining
flagging. (The other advantage of this method is that I can find the
flag style and rapidly skip from one to the next instance.)

Highlight Styles Temporarily: When I have assembled a set of
documents for conversion to html, I use F&R to set the styles
(above) whenever possible. Then, to be able to see the potential
problems, I redefine the style colours so I can see them in the
zoomed-out view. For example, by setting the List Number style
to green type, I can easily spot all instances of ordered lists—and
elements like bullet paragraphs within an ordered list stand out
clearly. I used to set resolved styles in hidden text to make the
document shrink as I dealt with it but it introduces too many
problems with tabular material. The nice thing about this technique
is that the style changes can be temporary: just reset the template
to update the styles to their normal definition.

88 Wildcards in the Real World

Allene Goforth wrote:

Here are five of my wildcard routines. I use more than those, but
some are specific to various publishers, and others are of the half-
baked variety.

Description: In APA-style references lists, find volume numbers
in roman and change them to italic. Retain the issue numbers in
roman.

Find What: , [0-9]{1,}
Replace With: [nothing]; change font to italic
Key Words: APA, references, volume numbers
Before: Developmental Neurobiology, 13(2)
After: Developmental Neurobiology, 13(2)
Comments: Find string includes a space between the first comma

and the bracket.

Description: In APA-style references lists, find issue numbers in
italics and change to roman.

Find What: ([0-9]@)
Replace With: [nothing]; change format to roman
Key Words: APA, references, issue numbers
Before: Developmental Neurobiology, 13(2)
After: Developmental Neurobiology, 13(2)

Description: In APA-style references lists, find initials in names
that need a space inserted after the period.

Find What: ([A-Z].[!A-Z])
Replace With: 1
Key Words: APA, references, initials
Before: Brown, A.C.
After: Brown, A. C.
Comments: A space is needed at the beginning of the Replace

string.

Description: In APA-style references lists, find name strings con-
taining “&” that need commas inserted before the “&.”

Find What: ([&])
Replace With: ,1
Key Words: APA, references, &, comma
Before: Smith, A. B. & Gordon, D. J.
After: Smith, A. B., & Gordon, D. J.

Wildcards in the Real World 89

Comments: In the Find string, there is a space between the open-
ing parenthesis and the bracket.

Description: Find and close up space between journal volume
number and issue number in APA-style references lists.

Find What: (([0-9]@))
Replace With: 1
Key Words: APA, references, space, volume, issue
Before: 45 (3)
After: 45(3)
Comments: In the Find string there should be a space before the

opening parenthesis. There should not be a space before the first
character in the Replace string.

Michael Coleman wrote:

Right now I’m working on an index. There’s not a lot of work to be
done, but it was exported from Quark to Word, so all the formatting
was stripped. (If there’s a way to avoid that, I’d love to learn about
it.) So I set styles for the four levels. Simple enough. The only other
trick is to get back all of the italics. There are a few titles that need
to be italicized, and fortunately I know that they all have names
with at least three words, so I searched for a string

[A-Z]([a-z]@) [A-Z]([a-z]@) [A-Z]

I didn’t make any automatic changes because several titles fit
the string but don’t get italicized.

We used to have a lot of tables, figures, and exhibits in our books,
but now they’re all called figures. In the index, the appropriate first
letter—t, f, or e—appeared in italics after the page number, such as
11-11e. (We use chapter-page pagination.) So I searched for

([0-9])[e,f,t]

I set the replace string to italic and replaced with

\1f

Then I searched for ([0-9]) formatted as italic and changed it
back to roman using \1.

Our old style was to use en dashes to show a range of pages, but
that was hard to read because of the hyphens in the chapter-page
pagination format. So we changed it to “to.” I therefore searched for

90 Wildcards in the Real World

^=([0-9])

And I replaced it with

to \1

Mary L. Tod wrote:

Here’s a funky list of references in my current work. I’ve edited the
first three to show you the style desired. I will attack these with a
combination of wildcard searches and whittle it down.

Unedited references:

1. Dor V, Saab M, Coste P, Kornaszewska M, and Montiglio F,
Left ventricular aneurysm: A new surgical approach. Thoracic and
Cardiovascular Surgeon, 1989. 37: p. 11–19.

2. Burkhoff D and Wechsler AS, Surgical ventricular remodel-
ing: a balancing act on systolic and diastolic properties. J Thorac
Cardiovasc Surg, 2006. 132(3): p. 459–63.

3. Jones RH, Velazquez EJ, Michler RE, Sopko G, Oh JK, O’Connor
CM, et al., Coronary Bypass Surgery with or without Surgical Ven-
tricular Reconstruction. N Engl J Med, 2009: p. NEJMoa0900559.

4. Fung YC, Biomechanics: Motion, flow, stress, and growth.
1990, New York: Springer Verlag.

Edited references to show style desired:

1. Dor V, Saab M, Coste P, Kornaszewska M, Montiglio F. Left
ventricular aneurysm: a new surgical approach. Thorac Cardiovasc
Surg 1989;37:11–9.

2. Burkhoff D, Wechsler AS. Surgical ventricular remodeling: a
balancing act on systolic and diastolic properties. J Thorac Cardio-
vasc Surg 2006;132:459–63.

3. Jones RH, Velazquez EJ, Michler RE, et al. Coronary bypass
surgery with or without surgical ventricular reconstruction. N Engl
J Med 2009;360:1705–17.

4. Fung YC. Biomechanics: motion, flow, stress, and growth. New
York: Springer Verlag; 1990.

Here’s the string I tried:

([!\^013]@, [!\^013]@, [!\^013]@,)[!\^013]@(et al.)

And that did the trick!

Wildcards in the Real World 91

Steve Hudson wrote:

Remove Time stamping from most logs:
Find What: [[]*[]]
Replace With: nothing

Kill excessive blank paragraphs
Find What: ^p^p^p
Replace With: ^p^p

Locate some passive voice instances
Find What: be <*ed>

Convert a list of Firstname Lastname to Initial. Lastname
Find What: <(?)(*)> <(*)>
Replace With: \1. \3

Find manually formatted numbering (hand tweak)
Find What: [0-9]@.^t
Replace With: Pass 1 List style, pass 2, nil.

Turn straight quotes to curly quotes
Turn off AutoCorrect. then:
Find What: "
Replace With: "
Find What: ’
Replace With: ’

Change all numeric dates from DD/MM/YY(YY) to
MM/DD/YY(YY) and back again

Find What: <([0-9]@[/.-])([0-9]@[/.-])([0-9]@>)
Replace With: \2\1\3

Sharon Key wrote asking why, after selecting smart quotes, her
find and replace of quotes with themselves didn’t change straight
to curly. It’s because the find and replace is not triggering the smart
quote function. To do that, it needs something before or after the
quote to help the system dope it out. It’s actually triggered by an
“end of word” condition. So use these:

Find What: "(<*>)
Replace With: "\1

Find What: ([!])"
Replace With: ’1"

92 Wildcards in the Real World

Both formulae use the () to force capture of that segment to be
referred to in the replace section as \1 (or whatever left -> right
position it holds if there are multiple bracketed entries).

The first finds quotes followed by a word (a < is a start of a word,
* is anything, a > is the end of a word), and replaces the quote
with the word (now referred to as \1 from being bracketed) after it.
You can’t use that same trick for the second, as it selects the whole
string of words afore it, and the smart quote feature is confused as
the last typed character was in a range. So, we find any non-blank
character followed by a quote, and replace the single character and
the quote. This will take care of most of your problems.

The easiest way to specify a special character (without having to
“escape” it) is to use the ASCII code instead. For example, for an
opening parenthesis, use ASCII code 40. (ASCII codes are specified
in any sort of search with the caret ^.) Here are the ASCII codes
you can use rather than remembering to escape other characters:

\ = ^92
(= ^40
) = ^41
? = ^63
{ = ^123
} = ^125
[= ^91
] = ^93
@ = ^64
< = ^60
> = ^62
* = ^42
^ = ^94

Here are some other handy wildcard searches:

10{1,3} finds “10”, “100”, and “1000”.
[10]@ finds any binary number
<[a-zA-Z]{1,3}> finds words of three letters or less.
<[A-Z][a-z]@> finds any title-cased word.
<[0-9]@> finds any whole number, <[0-9]{1,3}> from 0-999

Reference

BUILT-IN CODES

Character Find What Replace With
Annotation Mark (comment) ^a
Any character ^?
Any digit ^#
Any letter ^$
Caret character ^^ ^^
Clipboard contents ^c
Column break ^n ^n
Contents of the Find What box ^&
Em dash ^+ ^+
En dash ^= ^=
Endnote mark ^e
Field ^d
Footnote mark ^f
Graphic ^g
Line break ^l ^l
Manual page break ^m ^m
Nonbreaking hyphen ^~ ^~
Nonbreaking space ^s ^s
Optional hyphen ^- ^-
Paragraph mark ^p ^p
Section break ^b
Tab character ^t ^t
White space ^w

93

94 Reference

ANSI CHARACTER CODES

Character Name Macintosh PC
footnote reference 2 2
tab 9 9
line break 11 11
page/section break 12 12
paragraph break 13 13
column break 14 14

- nonbreaking hyphen 30 30
– optional hyphen 31 31

space 32 32
‚ comma 226 130
ƒ folio 196 131
„ double comma 227 132
. . . ellipses 201 133
† dagger 160 134
‡ double dagger 224 135
ˆ caret 246 136
‰ per thousand 228 137
Š capital S hacek 138
‹ open angle bracket 220 139
Œ capital oe diphthong 206 140
‘ open single quote 212 145
‘ close single quote 213 146
“ open double quote 210 147
“ close double quote 211 148
• bullet 165 149
– en dash 208 150
— em dash 209 151
˜ tilde 247 152
™ trademark 170 153
š lowercase s hacek 154
› close angle bracket 221 155
œ lowercase oe diphthong 207 156
Ÿ capital Y umlaut 217 159

non-breaking space 160 160
¡ inverted exclamation 193 161
¢ cent 162 162

Reference 95

Character Name Macintosh PC
£ pound 163 163

cell (in a table) 219 164
¥ yen 180 165
¦ pipe 124 166
§ section 164 167
¨ umlaut 172 168
© copyright 169 169
ª ordinal, feminine 187 170
« left chevrons 199 171
¬ not 194 172
- soft hyphen 248 173
® registered 168 174
¯ macron 248 175
° degree 161 176
± plus or minus 177 177
² superscript 2 50 178
³ superscript 3 51 179
´ acute accent 171 180
μ micro 181 181
¶ pilcrow 166 182
· middle dot 225 183
¸ cedilla 252 184
¹ superscript 1 49 185
º ordinal, masculine 188 186
» right chevrons 200 187
¼ one-fourth 188
½ one-half 189 189
¾ three-fourths 190 190
¿ inverted question 192 191
À capital A, grave 203 192
Á capital A, acute 231 193
Â capital A, circumflex 229 194
Ã capital A, tilde 204 195
Ä capital A, umlaut 128 196
Å capital A, angstrom 129 197
Æ capital AE, diphthong 174 198
Ç capital C, cedilla 130 199
È capital E, grave 233 200

96 Reference

Character Name Macintosh PC
É capital E, acute 131 201
Ê capital E, circumflex 230 202
Ë capital E, umlaut 232 203
Ì capital I, grave 237 204
Í capital I, acute 234 205
Î capital I, circumflex 235 206
Ï capital I, umlaut 236 207
Ð capital eth 208
Ñ capital N, tilde 132 209
Ò capital O, grave 241 210
Ó capital O, acute 238 211
Ô capital O, circumflex 239 212
Õ capital O, tilde 205 213
Ö capital O, umlaut 133 214
× multiply 120 215
Ø capital O, slash 175 216
Ù capital U, grave 244 217
Ú capital U, acute 242 218
Û capital U, circumflex 243 219
Ü capital U, umlaut 134 220
Ý capital Y, acute 89 221
Þ capital thorn 222
ß sharp s 167 223
à lowercase a, grave 136 224
á lowercase a, acute 135 225
â lowercase a, circumflex 137 226
ã lowercase a, tilde 139 227
ä lowercase a, umlaut 138 228
å lowercase a, angstrom 140 229
æ lowercase ae,

diphthong
190 230

ç lowercase c, cedilla 141 231
è lowercase e, grave 143 232
é lowercase e, acute 142 233
ê lowercase e, circumflex 144 234
ë lowercase e, umlaut 145 235
ì lowercase i, grave 147 236
í lowercase i, acute 146 237

Reference 97

Character Name Macintosh PC
î lowercase i, circumflex 148 238
ï lowercase i, umlaut 149 239
ð lowercase eth 240
ñ lowercase n, tilde 150 241
ò lowercase o, grave 152 242
ó lowercase o, acute 151 243
ô lowercase o, circumflex 153 244
õ lowercase o, tilde 155 245
ö lowercase o, umlaut 154 246
÷ divide 214 247
ø lowercase o, slash 191 248
ù lowercase u, grave 157 249
ú lowercase u, acute 156 250
û lowercase u, circumflex 158 251
ü lowercase u, umlaut 159 252
ý lowercase y, acute 121 253
þ lowercase thorn 254
ÿ lowercase y, umlaut 216 255

WILDCARDS

? Finds any single character: “c?t” finds “cat,” “cut,” and
“cot.”

* Finds any string of characters: “b*d” finds “bad,” “bread,”
and “bewildered.”

[] Finds one of the specified characters: “b[ai]t” finds “bat”
and “bit” but not “bet.”

[-] Finds any single character in the specified range (which
must be in ascending order): “[l-r]ight” finds “light,”
“might,” “night,” and “right” (and “oight,” “pight,” and
“qight,” if they exist).

[!] Finds any single character except those specified: “m[!u]st”
finds “mist” and “most” but not “must.” “t[!ou]ck” finds
“tack” and “tick” but not “tock” or “tuck.”

{n} Finds exactly n occurrences of the previous character or
expression: “re{2}d” finds “reed” but not “red.”

{n,} Finds at least n occurrences of the previous character or
expression: “re{1,}d” finds “red” and “reed.”

98 Reference

{n,m} Finds from n to m occurrences of the previous character or
expression e.g. 10{1,3} finds “10,” “100,” and “1000.”

@ Finds one or more of the previous character or expression
before something else: “me@t” finds both “met” and
“meet”; “me@” (without the “t”) finds only “me” because
nothing comes after it.

< Finds the beginning of a word: “<inter” finds “interest”
and “interrupt” but not “splinter.”

> Finds the end of a word: “in>“ finds “in” and “main” but
not “inspiring.”

Ranges

[a-e] Finds any of a, b, c, d or e
[0-9] Finds any digit
[a-z] Finds any occurrence of a lowercase letter.
[A-Z] Finds any occurrence of an uppercase letter.
[!x-z] Finds any single character except those in the specified

range: “t[!a-m]ck” finds “tock” and “tuck” but not “tack” or
“tick.”

Groups

() Creates a wildcard group
\1 Inserts the contents of the first wildcard group in the “Re-

place With” text.
\2 Inserts the contents of the second wildcard group in the “Re-

place With” text; etc.

Characters to “Escape”

There are actually quite a few characters that have to be escaped
if you want to use them as characters rather than wildcards. Here
they are, along with their meaning as wildcards:

? any character
* zero or more characters
[begins a range
] ends a range

Reference 99

{ begins a specified number
} ends a specified number
(begins an expression
) ends an expression
< begins a word
> ends a word
^ introduces a numeric character code
\ the escape character!

BUILT-IN CODES WITH WILDCARDS

Character Works
with
wildcards

Doesn’t
work with
wildcards

Wildcard
or ANSI
equiva-
lent

Annotation Mark
(comment)

^a

Any character ^? ?
Any digit ^# [0-9]
Any letter ^$ [A-z]
Caret character ^^
Column break ^n
Em dash ^+
En dash ^=
Endnote mark ^e ^02
Field ^d ^019
Footnote mark ^f ^02
Graphic ^g ^047
Line break ^l
Manual page break ^m
Nonbreaking hyphen ^~
Nonbreaking space ^s
Optional hyphen ^-
Paragraph mark ^p ^013
Section break ^b ^012
Tab character ^t
White space ^w [^s^t^032]

Other Resources

There’s an excellent explanation of how to find and replace with
wildcards at the Microsoft Word MVP site:

http://www.mvps.org/word/FAQs/General/UsingWildcards.htm

Allen Wyatt provides all kinds of information about finding
and replacing on his WordTips site:

http://wordribbon.tips.net/C0919_Find_and_Replace.html

Graham Mayor provides a beautifully detailed and illustrated
wildcard tutorial:

http://www.gmayor.com/replace_using_wildcards.htm

You can download a free find and replace reference card from
the Editorium website:

http://www.editorium.com/wildcard_reference.pdf

I recommend printing it on 8.5-by-11-inch cardstock, both front
and back (each side will be different), and then cutting the card-
stock in half lengthwise (at 4.25 inches). That will give you a
handy reference card to keep by your computer and another
card to give to a friend.

100

Acknowledgments

I would like to thank the following readers of Editorium Update
for their questions, suggestions, and inspiration:

Richard Adin
Pamela Angulo
Karen L. Bojda
Michael Coleman
Eric Fletcher
Allene M. Goforth
Steve Hudson
Sharon Key
Andrew Lockton
Jeanne Pinault
Hilary Powers
Mary L. Tod
Rosalie Wells

I would also like to thank my daughter Rachel Lyon for her
excellent index. Rachel writes indexes for some of the best pub-
lishers in the world, and she would love to write an index for
you. You can learn more here:

http://www.lyonpublishingservices.com

101

Index

Adin, Richard, 69–70, 71, 73–74, 76, 77, 79, 82
ANSI codes, 15, 16–20, 40–42, 94–97
ASCII codes, 15, 16, 92

backslash, 33–34
built-in codes, 41, 93, 99. See also find and replace with built-in codes

carriage returns, 42, 72–73
case, in refined basic search, 3
character codes. See find and replace with character codes
Chicago Manual of Style, formatting numbers according to, 64–69
citations, fixing, 69–83
clipboard contents, 10
Coleman, Michael, 89–90
context, considering, 60–61

dictionary, wildcard, 84–92
duplicate paragraphs, deleting, 57–60

em dash, 9
en dash, 10, 69
errors, when using wildcards, 61–63
“escaping” wildcards, 33–34, 98–99

find all word forms, in refined basic search, 4
find and replace, basic, 1–7

refining search, 2–7
find all word forms, 4
find whole words only, 3
formatting, 5–7
ignore punctuation characters, 4
ignore white-space characters, 5
match case, 3
match prefix, 4
match suffix, 4
other options, 5
sounds like, 3–4
use wildcards, 3
replacing basic text, 1

find and replace with built-in codes, 8–14
“Find what” codes, 8–10
“Find What Text” code, 12–14
“Replace with” codes, 10–11
summary of built-in codes, 11

102

Index 103

find and replace with character codes, 15–23
ANSI codes, 15, 16–20
ASCII codes, 15, 16
discerning code for, 22–23
Unicode, 15–16, 20–21

find and replace with wildcards, 24–42
basics, 24–29
“escaping” wildcards, 33–34
“Find What Expression” wildcard, 37–40
searching with wildcards, 29–31
using wildcards with ANSI codes, 40–42
wildcard grouping, 35–37, 71–72, 98
wildcard ranges, 31–33, 98

“Find what” codes, 8–10, 65
“Find What Expression” wildcard, 37–40, 56, 67
“Find What Text” code, 12–14, 56
Fletcher, Eric, 85–87
footnotes, formatting, with “Find What Text” code, 13–14
formatting
in “Find What Text” code, 12–14
in refined basic search, 5–7
replacing using, 81–82, 88, 89–90

Goforth, Allene, 88–89

handles, 43–46, 71, 77, 83
hidden formatting, 81–82
Hudson, Steve, 91

ignore punctuation characters, in refined basic search, 4
ignore white-space characters, in refined basic search, 5

Key, Sharon, 91

lists, adding periods to, 50–51
Lockton, Andrew, 67

Macintosh, finding carriage returns on, 42
macro for next character, 22–23
match case, in refined basic search, 3
match prefix, in refined basic search, 4
match suffix, in refined basic search, 4
MegaReplacer program, 46, 66
“More” button, options under, 4–7

NextCharacter macro, 23
numbers, elided, 64–69

options, refining search with, 4–7

paragraph break, “Find what” code for, 9, 11
periods, adding, to lists, 50–51
poker, and wildcards, 24–25
Pinault, Jeanne, 69
Powers, Hilary, 57, 85
prefix, in refined basic search, 4
punctuation characters, in refined basic search, 4

quotation marks, 91–92

104 Index

RazzmaTag program, 46
“Replace with” codes, 10–11, 65

smart quotes, 91–92
“Special” button, options under
finding, in basic search, 8
replacing, in basic search, 10
finding, with wildcards, 27
replacing, with wildcards, 37

sounds like, in refined basic search, 3–4
styles
applying, 43–46, 86–87
to flag items, 87
temporarily highlighting, 87

suffix, in refined basic search, 4

Tod, Mary L., 90
tracked changes, wildcard searching with, 56–57
two-step searching, 51–54

Unicode, 15–16, 20–21, 33

Wells, Rosalie, 85
“What’s That Character,” 22–23
white-space characters, in refined basic search, 5
whole words only
in refined basic search, 3
with wildcards, 54–55

wildcard dictionary, 84–92
wildcards. See also find and replace with wildcards
“escaping,” 33–34, 98–99
finding whole words only with, 54–55
grouping, 35–37, 71–72, 98
list of, 97–99
ranges, 31–33, 98
real-life examples using, 46–50
searching with, 3, 29–31
using, with ANSI codes, 40–42

